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Abstract 

Purpose. Rock fragmentation is the first result of blasting, and is directly related to the costs of mining. It is therefore im-

perative to predict the best possible way to achieve more economic and efficient fragmentation by blasting. 

Methods. The study was carried out on two pits of Dangote crystalline limestone quarry at Obajana, Kogi State, Nigeria. 

The average uniaxial compressive strength (UCS) obtained from the rock samples from both pits of the quarry (i.e. OP1 and 

OP2) was determined in accordance to the international standard. The in-situ block sizes of the rock mass distribution were 

determined using AutoCAD, while the average percentage values of F50 was obtained from the Split-Desktop analyses. The 

total charge of explosive was obtained at each location. All these variables were used to develop a model for prediction of 

effective fragmentation. 

Findings. With the aid of artificial neural network (ANN), the proposed model was found to be suitable for prediction of 

blast efficiency. Interestingly, the model uses pre-blasting parameter of in-situ block size which can be determined using  

AutoCAD and post blasting parameter of fragmentation size distribution that can be determined using Split-Desktop. 

Originality. The findings compared the predicted value obtained with the measured efficiency, and the value of coefficient 

of determination, R2 obtained is 0.9733, which makes it suitable. 

Practical implications. The outcomes of the investigation have significant implications for the practical application. The 

model was used at the Freedom quarry, and it predicts good fragmentation during blasting. However, it does not consider the 

timing effect on the mining operation. 

Keywords: crystalline limestone deposit, rock fragmentation, Split-Desktop software, AutoCAD, ANN 

 

1. Introduction 

Fragmentation is a critical process in quarrying and  

mining operations, as it directly affects the efficiency and 

cost of subsequent processing stages [1], [2]. In limestone 

quarries, efficient fragmentation is particularly important due 

to the increasing demand for high-quality aggregates and 

cement raw materials [3]. However, achieving optimal frag-

mentation in limestone quarries remains a challenging task 

due to the inherent heterogeneity of the rock mass and the 

complex interactions between blasting parameters, rock 

properties, and fragmentation outcomes. 

The efficiency of a blast in fracturing a rock mass  

depends on the block size and the size distribution of the 

block [4]. The strengths of the joint sets generally are so 

small compared to the intact rock strength that most of the 

fracturing occurs along the joints rather than through the 

rock [5]. A realistic mechanical understanding of fundamen-

tal rock fracture modes is necessary in the search for greater 

efficiency and effectiveness of excavation techniques, partic-

ularly relevant in cases of rock fragmentation by blasting [6]. 

Blasting operations involve breaking or loosening the rock, 

ore and waste into minimum size and extracting the largest 

possible size at minimum cost. Drilling and blasting are 

essential to penetrate and fragment the rock mass [7]. 

Mining and its derivatives are very essential to our eve-

ryday lives. The challenges faced by Nigeria mining industry 

include not just finding enough mineral resources to meet 

demand, but also producing these minerals in a way that 

causes least harm, and conveys maximum advantage to the 

environment and society. 

As a result of the growing concern about the effect of air 

pollution released into the environment, flyrock and excessive 

ground vibration after blasting, and cost of explosives used 

for blasting, there is need to identify, characterize, evaluate 

and possibly specify control measures for effective blast de-

sign to aid maximum recovery in the mining industry [8]-[11]. 

Several factors can influence the fragmentation process, 

including blasting parameters, rock properties, and joint 

orientation. Blasting parameters such as burden, spacing, and 

charge concentration, can significantly affect the fragmenta-

tion outcomes [7], [12]. For instance, increasing the burden 

can lead to larger fragment sizes, while increasing the charge 

concentration can lead to smaller fragment sizes [13]. Rock 
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properties, such as rock type, texture, and strength, can also 

influence the fragmentation process [14]. For example, rocks 

with higher strength and lower porosity tend to produce lar-

ger fragment sizes. Additionally, joint orientation can also 

play a significant role in the fragmentation process [15]. For 

example, the orientation of the joints perpendicular to the 

blasting can lead to smaller fragment sizes. 

Blasting is carried out in mining to reduce the in-situ 

rocks to smaller size fragments that can be easily handled by 

loading and haulage equipment [2], [3]. The process involves 

breaking or loosening the rock to extract largest possible 

tonnage of smaller size fragments at a reduced cost. To 

achieve this objective, quantitative and qualitative require-

ments of blast fragmentation are essential conditions that 

must be met [3], [16]. 

The primary purpose of blasting is rock fragmentation 

and displacement of the broken rock. Blasting operations 

may cause excessive noise and vibration in communities. 

The levels of structural vibration caused by ground vibration 

from blasting can result in damage to, or failure of, struc-

tures. The intensity of ground vibration depends on various 

parameters which can be categorized into two; controllable 

parameters and uncontrollable parameters [1]-[3]. 

Controllable parameters are mainly related to explosive 

characteristics (initiation system, initiation sequence, number 

of free faces, buffers, explosives energy, charge geometry, 

loading method) and blast hole design parameter (hole diame-

ter, hole depth, subdrill depth, hole inclination, collar height, 

stemming, blast pattern, the burden to spacing ratio, blast size 

and configuration, blasting direction, initiating system, initiat-

ing sequence, number of free faces, explosive types, explosive 

energy, charge geometry, loading method), while others are 

uncontrollable parameters, which are natural and  related to 

geological conditions and lithology of the rock mass [1]-[3]. 

Blasting operations are usually accompanied by various 

unwanted phenomena such as flyrocks, back-break and vi-

bration. Meanwhile, some proposed mathematical models for 

blast fragmentation have failed [2], [16]. The ambiguity 

therefore triggers the question: how consistent can the frag-

mentation arising from rock blasting be improved optimally? 

The magnitude of the anticipated benefits can be varied, 

especially given the different types of rocks. 

Recent research has focused on developing predictive 

models for fragmentation of various rock types, including 

limestone [17], [18]. These models often rely on empirical 

correlations between blasting parameters, such as burden, 

spacing, charge concentration, fragmentation outcomes, such 

as mean fragment size and fragmentation uniformity [12]. 

Numerous fragmentation prediction models have been 

developed to estimate the size distribution of fragments 

resulting from blasting. These models can be broadly clas-

sified into three categories: empirical, analytical, and nu-

merical models. Empirical models are based on statistical 

relationships between blasting parameters and fragmenta-

tion outcomes. Examples of empirical models include the 

Kuz-Ram model [19] and the Cunningham model [20]. 

However, these models are often site-specific and may not 

account for the unique geological and geotechnical charac-

teristics of the limestone [13], [21]. 

Analytical models, on the other hand, are based on the 

principles of rock mechanics and blasting dynamics. Exam-

ples of analytical models include the model developed 

by [22] and the model developed by [15]. These models can 

provide valuable insights into the underlying mechanisms of 

fragmentation, but may require complex mathematical for-

mulations and extensive computational resources. 

Numerical models, such as discrete element modelling 

(DEM) and finite element modelling (FEM), have also been 

used to simulate the fragmentation process. Examples of 

numerical models include the DEM model developed by [23] 

and FEM model developed by [15]. These models provide 

detailed information on the fragmentation process, but may 

require significant computational resources and expertise. 

In effect, the process of objectively analyzing the effec-

tive relationship between the blast results and adopted  

models, and the overall economics of the mining operation is 

often far from the obscurities to provide conclusive results [3], 

[24]. Despite the progress made in understanding the factors 

influencing fragmentation in limestone quarries, several 

unresolved aspects remain, such as; the effects of joint orien-

tation, rock texture, and moisture content on fragmentation 

outcomes are not well understood; the development of pre-

dictive models that can account for the variability in lime-

stone properties and blasting conditions is still a topic of 

ongoing research; and the majority of existing fragmentation 

models are based on 2D analysis, which may not accurately 

represent the complex 3D rock mass nature [12], [14], [15]. 

This research is aimed to address these knowledge gaps 

by investigating the factors influencing efficient fragmenta-

tion in a typical crystalline limestone quarry. The research 

objectives were to analyze the effects of blasting parameters, 

rock properties, and joint orientation on fragmentation out-

comes in limestone quarry, develop a predictive model for 

fragmentation in the limestone quarry that accounts for the 

variability in rock properties and blasting conditions, and 

evaluate the performance of the developed model using field 

data from a limestone quarry. 

2. Study area 

The study area is located within the Guinea Plain of Ni-

geria, characterised by sedimentary and metamorphic rocks. 

The dominant geological formation is the Anambra Basin, 

which comprises shale, limestone, and sandstone. The rock 

composition of the area is primarily sedimentary and meta-

morphic in nature. The region geology is characterised by 

crystalline limestone, primarily composed of calcium car-

bonate (CaCO3) from ancient marine organisms. This makes 

the rock composition of the area crucial for mining and con-

struction activities, as well as for environmental assessments. 

Dangote cement quarry in Obajana, Kogi State, Nigeria is 

an open pit mine, operating in three different pits code-

named OP1, OP2 and OP3. Dangote quarrying operations 

involve the extraction of limestone, granite and other miner-

als, which are used in various industries, including construc-

tion and manufacturing. The quarrying operations are a sig-

nificant part of its business, with a focus on sustainability 

and environmental responsibility. The company emphasizes 

health and safety in its operations, and ensures a safe work-

ing environment for better performance and efficiency. 

The study was carried out in two of the three pits (OP1 

and OP2). The two mine pits produce crystalline limestone 

aggregates, and both are in operation. Figure 1 shows the 

Map of Dangote cement quarry in Kogi State as extracted 

from the Geological Map of Nigeria. 
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Figure 1. Location Map of the Study Area Showing the Pits [25] 

 

Dangote cement quarry is located geographically  

between the latitude 06°30'55''N – 08°06'10''N and longitude 

06°20'10''E – 07°10'00''E at 230 m above the sea level and  

it is approximately about 200 km southwest of Abuja, the 

capital of Nigeria. 

3. Methods 

3.1. Uniaxial compressive strength 

The uniaxial compressive strength test is typically cha-

racterized and determined by loading a cylindrical rock sam-

ple with a diameter of approximately 50 mm and length to 

diameter ratio of 2.5:1 axially until the sample fails. It was 

carried out in accordance with international standards [26], 

[27]. The test is mainly intended for dynamic strength classi-

fication and characterization of intact rocks [28]. 

3.2. In-situ block size distribution 

The in-situ rock block sizes are determined with the use 

of AutoCAD tool. AutoCAD has become a standard pro-

gram for producing technical drawings of all types [29]. 

This may be used for structural or non-structural model. 

The required geotechnical data for the model include the 

relative position of the outcrop on the earth’s surface,  

the spacing of joints, the persistence of fracture and the 

orientation of joint sets. 

The individual blocks generated by the intercept of the 

joints are banded together and extruded to the required height 

based on the distance between sub-vertical features. Based 

on the model created, the surface area and the volume of 

each block is estimated to generate in-situ block size distri-

bution within the required outcrop. 

3.3. Fragment size distribution analysis 

of blasted rocks at OP1 and OP2 

Split-Desktop digital image analysis was used to deter-

mine the rock fragmentation gradation distribution of ave-

rage 50% passing of fragment sizes. High precision camera 

was used to capture the accurate images of the blasted muck-

piles. This involves five phases for each image captured, and 

at the fifth stage, the size distribution results are displayed in 

the form of diagrams [30]. 

The blast design parameters for the blast operations car-

ried out at OP1 and OP2 are presented in Table 1. 

However, the only difference between the two pits is 

the burden value, which is reduced by 1 m, bench height  

is reduced by 5 m, and powder factor is reduced by 

0.7 kg/ton in OP2. 

Table 1. Data for drilling and blasting of OP1 and OP2 

S/N Parameter Value for OP1 Value for OP2 

1 Burden, m 5 4 

2 Spacing, m 3 3 

3 Bench height, m 14.5 9.5 

4 Hole diameter, mm 125 125 

5 Stemming, m 3 2.5 

6 Sub-drill, m 1 1 

7 
Powder factor, 

kg/tons 
3.2 2.5 

8 
Quantity of explo-

sive per meter, kg 
ANFO = 16 ANFO = 16 

9 

Explosive type: 

Low explosive, kg 

Bulk emulsion, kg 

 

18 

22 

 

18 

22 

10 
Delay time/ 

interval, ms 

17 

25 

17 

25 

4. Results and discussion 

4.1. The average uniaxial compressive 

strength of rock samples 

The average uniaxial compressive strength (UCS) ob-

tained from five samples, each from OP1 and OP2 of Dan-

gote Obajana quarry, is 68.20 MPa and 76. 74 MPa, respec-

tively, as shown in Tables 2 and 3. 

 
Table 2. Uniaxial compressive strength of rock samples from OP1 

Sample 

No. 

Failure 

load, KN 

Cross-

sectional 

area, mm2 

Mass 

before  

rest, g 

Comp. 

strength, 

MPa 

OP1 A 155 22.8 136 68.06 

OP1 B 150 22.8 132 66.61 

OP1 C 170 22.8 149 74.57 

OP1 D 145 22.8 127 62.99 

OP1 E 160 22.8 140 68.78 

Average 68.20 

Mean = 68.202; Standard Deviation = 25.100 

 
Table 3. Uniaxial compressive strength of rock samples from OP2 

Sample 

No. 

Failure 

load, KN 

Cross-

sectional 

area, mm2 

Mass 

before 

rest, g 

Comp. 

strength, 

MPa 

OP2 A 170 22.8 149 73.85 

OP2 B 210 22.8 184 92.67 

OP2 C 140 22.8 123 62.26 

OP2 D 170 22.8 149 75.30 

OP2 E 180 22.8 158 79.64 

Average 76.74 

Mean = 76.744; and Standard Deviation = 9.618 

 

The UCS of rock samples from the crystalline limestone 

quarry of OP1 and OP2 vary from 62.99 to 74.57 MPa and 

from 62.26 to 92.67 MPa, respectively. The variation in the 

UCS of the rock type is basically due to their mineralogical 

compositions. According to [31] and [32], the UCS classifi-

cation of the rocks is of moderate strength. 

4.2. In-situ block size distribution of rock mass 

For the in-situ block size distribution of the rock type, 

AutoCAD software was used. In each of the two locations 

for the study, the in-situ rock mass conditions for the five 

different blasts with similar dimensions were modeled and 

their cumulative graph curves were plotted to obtain the 

average in-situ block size distribution. 
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The AutoCAD block size distribution for ten different 

blasts, five at OP1 and five at OP2, are shown in Figures 2 

and 3. The AutoCAD model dimension of the in-situ rock 

mass for each blast at OP1 is 90×50 m with a bench  

height of 14.5 m, and for OP2, it is 75×50 m with a bench 

height of 9.5 m. 

Figure 2 reveals the average in-situ block size distribution 

for the five blasts at OP1, with A having the least block size 

distribution of 4.07 m2 and D with the highest block size 

distribution of 5.62 m2. Figure 3 reveals the average in-situ 

block size distribution for the five blasts at OP2, with C 

having the least block size distribution of 3.07 m2 and B with 

the highest block size distribution of 5.41 m2. 

This actually helps in assessing the rock mechanical 

properties, such as strength, stiffness and stability of the rock 

mass as it affects the fragmentation process.  

 

(a) (b) 

  

(c) (d) (e) 

   

Figure 2. AutoCAD Block Size Distribution of Blasts A – E at OP1 

 

(a) (b) 

  

(c) (d) (e) 

   

Figure 3. AutoCAD Block Size Distribution of Blasts A – E at OP2 

 

The cumulative graph curves of the in-situ block size dis-

tributions for each of the five blasts A to E at OP1 and OP2 

are presented in Figures 4 and 5. These cumulative curves 

help in better understanding the distribution of block sizes, 

which is very important in assessment of rock fragmentation 

characteristics. Figure 4 shows the cumulative graph curves 

at OP1 with block sizes varying from 4.07 to 5.62 m2, where 

A is the lowest and D is the highest, respectively. 

Figure 5 shows the cumulative graph curves at OP2 with 

block sizes varying from 3.07 to 5.41 m2, in which C is the 

lowest and B is the highest, respectively. 

The cumulative curves, as shown in both Figures 4 and 5, 

provide a visual representation of the block size distribution, 

making it easier to interpret the data. Additionally, the curves 

help to compare the block size distribution with other data, 

such as rock strength and image analyses.  
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(c) (d) (e) 

Figure 4. Cumulative graph of in-situ block size distribution for blasts A – E at OP1: (a) block A; (b) block B; (c) block C; (d) block D; 

(e) block E 
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Figure 5. Cumulative graph of in-situ block size distribution for blasts A – E at OP2: (a) block A; (b) block B; (c) block C; (d) block D; 

(e) block E 

 

4.3. Image analysis 

The particle size distribution curve analyses of the muck-

piles obtained from the ten different blasts of both OP1 and 

OP2 using Split Desktop model are shown in Figures 6 and 

7. The results of the Split-Desktop processing of the blasted 

rock fragments are recorded in all the blasts. 

The Split-Desktop analyses in Figure 6 show a very 

closely related particle size distribution for the five blasts at 

OP1 with uniformity index of 1.26. The average values of F50 

obtained from the Split-Desktop analyses of OP1, as present-

ed in Table 4, are approximately 67.38 cm. 

The Split-Desktop analyses in Figure 7 show different 

particle size distribution for the five blasts at OP2 with uni-

formity index of 1.38. The average values of F50 obtained 

from the Split-Desktop analyses of OP2, as presented in 

Table 4, are approximately 69.40 cm. 
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(a) (b) 

  

(c) (d) (e) 

   

Figure 6. Cumulative grain size curves of image analysis of blasts A – E at OP1 

 

(a) (b) 

  

(c) (d) (e) 

   

Figure 7. Cumulative grain size curves of image analysis of blasts A – E at OP2 

 
Table 4. Average 50% passing of fragment sizes for blasts A – E at 

OP1 and OP2 

Blast OP1, cm OP2, cm 

A 64.8 67.1 

B 62.9 69.8 

C 66.9 73.5 

D 63.8 73.7 

E 78.5 62.9 

Average 67.38 69.40 

4.4. Model development 

Table 5 shows the variables used for the blast prediction 

model development. 

The ANN model is developed for predicting the blasting 

efficiency. The numbers of input and hidden neurons are 

three, while the neuron in the output layer is one. 

 

Table 5. Variables for the blast prediction model development 

S/N Blast 

Total 

charge, kg 

[(i + ii)·n] 

Average size 

of fragment 

50% passing, 

cm 

UCS, 

MPa 

In-situ 

block 

size, m2 

1 OP1 Blast A 5600 64.8 68.06 4.07 

2 OP1 Blast B 5750 62.9 66.61 4.12 

3 OP1 Blast C 6720 66.9 74.57 5.26 

4 OP1 Blast D 4940 63.8 62.99 5.62 

5 OP1 Blast E 6900 78.5 68.78 4.60 

6 OP2 Blast A 4800 67.1 73.85 4.53 

7 OP2 Blast B 4500 69.8 92.67 5.41 

8 OP2 Blast C 6160 73.5 62.26 3.07 

9 OP2 Blast D 4940 73.7 75.30 3.92 

10 OP2 Blast E 5880 62.9 79.64 3.84 
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The feed forward back propagation training algorithm was 

used. The obtained weights and biases were extracted from the 

ANN and then used to formulate mathematical model for 

predicting the blast efficiency, as presented in Equation (1). 

The prediction of the proposed model in Equation (1)  

is compared with the measured efficiency, as presented  

in Figure 8. 

3

1

% 7.8 tan 30.3384 70.7i
i

Eff h x
=

 
= + + 

 
,         (1) 

where: 

% Eff – the blast efficiency; 

xi in Equation (1) is as listed in Equations (2)-(4): 

(

)

1 30.0798tan 0.012237

0.4495 4.73568 76.5322 ;

x h TC

UCS IB

=  −

− + −
         (2) 

(

)

2 30.4429 tan 0.00438

0.5088 0.82539 6.140406 ;

x h TC

UCS IB

=  −

− + +
         (3) 

(

)

3 30.30669 tan 0.01582

0.96968 13.89014 69.52566 .

x h TC

UCS IB

=  − +

+ − +
         (4) 

 

 

Figure 8. Comparison of the measured and predicted blasting 

efficiency using ANN 

 

The prediction of the proposed model using ANN is 

compared with the measured efficiency and the value of the 

coefficient of determination, R2 obtained is 0.9733. 

5. Conclusions 

Rock mass is composed of two parts of in-situ rock and 

discontinuities. Discontinuities include structures in rock 

mass such as joints, faults, fractures, bedding and other 

weakness surfaces that significantly influence the enginee-

ring and mechanical properties of rock mass. 

The results of average UCS obtained from the rock sam-

ples of OP1 and OP2 are 68.20 and 76.74 MPa, respectively. 

This shows that the strengths of the rock types considered in 

the study area are moderate rock strength classes. 

For the in-situ block size distributions of rocks using Au-

toCAD, the dimensions for the in-situ rock masses of each 

pit vary from each other. The allowable and acceptable block 

sizes of 50% frequencies of the cumulative graphs of the in-

situ block size distributions were recorded for each location. 

The research also investigated the particle size distribution 

of blast-induced fragmentation of two pits (OP1 and OP2) of 

Dangote Obajana Quarry using the digital image processing 

of Split-Desktop to evaluate the degree of fragmentation of 

muckpiles produced from the blasting operations. 

The Split-Desktop analyses show that different rock 

masses subjected to similar blast design will produce varied 

degrees of fragmentation as a result of inherent resistances of 

the rock mass during blasting. 

These average values of F50 percentage passing of the 

muckpiles produced are considered suitable for the quarry 

operations in the study area as a result of close values to the 

allowable value of 100 cm of the crusher. 

The results obtained from the findings were used to de-

velop a model for prediction of blast efficiency. The predic-

tion of the proposed model using ANN is compared with the 

measured efficiency and the value of R2 obtained is 0.9733, 

which is suitable for prediction of blast efficiency. 
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Прогнозування ефективної фрагментації в типовому кар’єрі з видобутку кристалічного вапняку 

К.А. Ідову, Г.Н. Дакан, Д. Сулейман, З. Адаму, М.Г. Сайяді, Х.А. Кутман 

Мета. Дослідження фрагментації гірських порід при здійсненні вибухових робіт у вапняковому кар’єрі для прогнозування їх 

найкращих економічних показників. 

Методика. Дослідження проводилося на двох шахтах кар’єру кристалічних вапняків Данготе в Обаджані, штат Когі, Нігерія. 

Середня межа міцності на одноосьовий стиск (UCS), отримана зі зразків породи з обох шахт кар’єру (тобто OP1 і OP2), була встано-

влена у відповідності з міжнародним стандартом. Розміри блоків розподілу гірничої маси на місці видобутку визначені за допомогою 

AutoCAD, тоді як середні відсоткові значення F50 були отримані за допомогою аналізу Split-Desktop. На кожній локації отримано 

загальний заряд вибухівки. Зазначені змінні були використані для розробки моделі прогнозування ефективної фрагментації. 

Результати. Визначено, що за допомогою штучної нейронної мережі (ШНМ) розроблена модель виявилася придатною для про-

гнозування ефективності підривних робіт. Результати порівняння отриманого прогнозованого значення з виміряною ефективністю 

показали, що отримане значення коефіцієнта детермінації становить 0.9733, що є прийнятним. Зазначено, що ефективність фрагме-

нтації у розробленій моделі прогнозується на основі двох основних параметрів, а саме, попереднього до вибуху розміру блоків 

гірничої маси, який визначається за допомогою AutoCAD, та розподілу розмірів фракцій після вибуху, що аналізується у програм-

ному середовищі Split-Desktop. 

Наукова новизна. Створено прогнозну модель ефективності вибухових робіт в умовах вапнякових кар’єрів, яка вперше поєд-

нує характеристики гірського масиву до вибуху та ступінь фрагментації після вибуху на основі штучної нейронної мережі. 

Практична значимість. Створена модель була використана на кар’єрі Freedom й продемонструвала високий рівень прогнозу 

фрагментації гірських порід під час вибухових робіт, проте, не враховує вплив часу на видобування корисних копалин. 

Ключові слова: родовище кристалічних вапняків, фрагментація породи, програмне забезпечення Split-Desktop, AutoCAD,  

Artificial Neural Network 
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