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Abstract

Purpose. Mining-induced land subsidence is a significant concern in areas with extensive underground mining activities. There-
fore, the prediction of land subsidence is crucial for effective land management and infrastructure planning. This research applies an
artificial neural network (ANN) to predict land subsidence over the Mong Duong underground coal mine in Quang Ninh, Vietnam.

Methods. In the ANN model proposed in this research, four features are used as the model inputs to predict land subsi-
dence, i.e., model outputs. These features include the positions of ground points in the direction of the trough main cross-
section, the distance from the chamber (goaf) center to the ground monitoring points, the accumulated exploitation volume of
extraction space, and the measured/recorded time. The entire dataset of 12 measured epochs, covering 22 months with a
2-month repetition time period, is divided into the training set for the first 9 measured epochs and the test set for the last
3 measured epochs. k-fold cross-validation is first applied to the training set to determine the best model hyperparameters,
which are then adopted to predict land subsidence in the test set.

Findings. The best model hyperparameters are found to be 5 hidden layers, 64 hidden nodes and 240 iterated epochs. Root
Mean Square Error (RMSE) and Mean Absolute Error (MAE) of the predicted land subsidence depend on the time separated
between the last measured epoch and the predicted epoch. Within 2 months from the last measurements, RMSE and MAE are
at 22 and 13 mm for Epoch 10, which increase to 31 and 20 mm for Epoch 11 (4 months from the last measurement) and 37
and 24 mm for Epoch 12 (6 months from the last measurement).

Originality. A new ANN model with associated “optimal” hyperparameters to predict underground mining-induced land
subsidence is proposed in this research.

Practical implications. The ANN model proposed in this research is a good and convenient tool for estimating mining-
induced land subsidence, which can be applied to underground mines in Quang Ninh province, Vietnam.
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1. Introduction

Mining operations play a vital role in global economic
growth and development. One of the benefits of mining is

mines is increasing as some open-pit coal mines are converted
to underground due to their increasing depth [5]. The role of
Vietnamese coal is not only in economic growth in terms of

resource provision, which provides valuable minerals, metals,
and other resources to various industrial sectors, e.g., manufac-
turing, construction, energy [1]. Additionally, mining provides
jobs [2] not only for miners, but also for representatives of
other fields, such as geological engineers, surveyors, and elec-
tricians. In Vietnam, the mining industry has a long history
and has made a significant contribution to the Vietnamese
economy, providing a huge number of jobs [3]. The Vietna-
mese ore occurrence is diverse and contains about 70 types of
minerals [4], among which coal is one of the main mineral
sources. Most of Vietnam’s coal mines are located in the
northeast province of Quang Ninh (a.k.a. Quang Ninh Coal
Basin). Of these, there are about 30 underground and 20 open-
pit coal mines, the exploration volume of which is projected to
increase yearly. However, the proportion of underground

Received: 09 July 2023. Accepted: 09 October 2023. Available online: 30 December 2023

© 2023. L.Q. Nguyen, T.T.T. Le, T.G. Nguyen, D.T. Tran
Mining of Mineral Deposits. ISSN 2415-3443 (Online) | ISSN 2415-3435 (Print)

mineral exports, but also in political energy security in terms
of coal-fired electricity generation [6].

While mining has made contributions to the field of eco-
nomics, it poses environmental, social, and public health
challenges [7]. One of those environmental problems is land
subsidence. The excavation of mineral resources during
mining disrupts the internal stress equilibrium [8]. Conse-
quently, the extraction of minerals from underground depo-
sits results in the sinking or lowering of the Earth’s surface, a
phenomenon known as mining-induced land subsidence [9].
This occurrence presents substantial risks to infrastructure,
environmental stability, and human safety in mining
regions [10]. Various methods are employed to measure
mining-induced land subsidence, with common methods
including leveling [11], Global Navigation Satellite System
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(GNSS) [12], [13], and Interferometric Synthetic Aperture
Radar (InSAR) [14]-[16]. While measuring land subsidence
caused by mining activities is essential after the Earth’s sur-
face has sunk, there is a growing need for efficient manage-
ment and prediction of future mining-induced land subsi-
dence. This is crucial for sustainable mining practices and
land use planning [17]. Traditional subsidence prediction
methods, such as the empirical approach based on a combi-
nation of experience and analysis of a large set of observa-
tions [18], and the analytical approach relying on compute-
rized mathematical models [19], have been widely employed.
However, these methods often fall short in accuracy and
predictive capability. In recent years, Artificial Neural Net-
works (ANNSs) have emerged as a promising tool for subsid-
ence prediction, owing to their capability to capture complex
nonlinear relationships within datasets [20]-[22].

This article aims to apply ANNs to predict underground
mining-induced land subsidence, leveraging their strengths in
pattern recognition, adaptive learning, and generalization.
The study utilizes a dataset comprising the positions of
ground points in the direction of the trough main cross-
section, the distance from the chamber center to the ground
monitoring points, the accumulated exploitation volume of
extraction space, and the measured/recorded time. This da-
taset is used to train, validate, and predict mining-induced
land subsidence using ANN models. The application of
ANNSs in subsidence prediction in underground mining has
the potential to improve the accuracy and reliability of sub-
sidence forecast, enabling proactive measures for land man-
agement and infrastructure planning. By investigating the
capabilities of the ANN models in predicting underground
mining-induced land subsidence, this study aims to contrib-
ute to the advancement of subsidence prediction techniques
and support sustainable mining practices.

2. Study area, materials, and methods

2.1. Study area

This study focuses on the Mong Duong underground coal
mine in the Northeast province of Quang Ninh, Vietnam
(Fig. 1). Mong Duong is located within the administrative
boundaries of Cam Pha City, Quang Ninh Province, approxi-
mately 10 km north of the city center. It is adjacent to the Mong
Duong River and the East Sea to the north and northeast, and
shares borders with the Bac Quang Loi and Bac Coc Sau coal
mines to the south, and the Khe Cham coal mine to the west.

The Mong Duong coal mine is selected in this study be-
cause it is one of the oldest, established in 1982, and largest
underground coal mines in Vietnam, with a capacity of
1.5 million tons per year. Moreover, Mong Duong is an ongoing
mine, in which many residential houses and important infra-
structures, e.g., wastewater treatment or railway systems, are
located in close proximity. This makes those infrastructures
susceptible to land subsidence caused by mining exploration.
The selected mine is located in an area with complex geolo-
gical factors associated with various tectonic activities, such
as faulting and folding. The topography of the Mong Duong
coal mine is characterized by low to medium mountains,
with the highest point reaching 165 m in the central area.

2.2. Data

In this study, land subsidence () is measured using
GNSS technology. At the same time, other relevant mea-
surements were recorded, including the positions of ground
points in the direction of the trough main cross-section (Y),
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the distance from the chamber center to the ground monitor-
ing points (L), the accumulated exploitation volume of ex-
traction space (V), and the measured/recorded time (T).
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Figure 1. Study area of the Mong Duong underground coal mine
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Those measurements are shown in Figure 2 as an under-
ground mining configuration with three measurement times
Ti, T2, and Ty, corresponding to three chamber centers Oj,
O, and Ok. There are 22 points measured at 12 epochs with a
2-month time interval. As a result, there are a total of
242 instances, each involving the above-mentioned four
features (i.e., Y, L, V, and T). These instances are then used to
predict land subsidence (i.e., 77) using ANN.
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Figure 2. Underground mining configuration indicating the rela-
tionship between input variables used in this study: Y —
the positions of ground points in the direction of the
trough main cross-section; L —the distance from the
chamber center to the ground monitoring points; V —
the accumulated exploitation volume of extraction
space; t — the measured/recorded time
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Figure 3a shows the positions of measured points in the
direction of the trough main cross-section (red dots and
texts). The subsidence # has a relationship with the Y feature
that, at a specific epoch, higher subsidence is observed from
points situated closer to the trough center. This relationship
is shown in Figure 3a with each line corresponding to a
measured epoch. Figure 3a also indicates that subsidence
underwent continuous change up to the final measured epoch
(cf. lines corresponding to earlier and subsequent epochs).
This trend is confirmed by the relationships between the
measured subsidence # and the measurement time t of all
points in Figure 3b. The figure shows that measured points
exhibited continuous subsidence over time with different sub-
sidence rates, depending on their locations as indicated above.
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Figure 3. Relationships between measured subsidence 7 and input
variables: (a)the distance to the trough center Y;
(b) measured time; red dots and texts in (a) indicate the
locations of the measured points and their corre-
sponding indices

Given that Mong Duong is an ongoing underground
mine, we expect the accumulated exploitation volume regu-
larly increased over time. As a consequence, a relationship
between land subsidence 7 and the V feature, similar to that
with the t feature, can be found in Figure 4a that a larger
accumulated exploration volume V leads to higher subsi-
dence at all points. We note that, while the measurements
were taken regularly over time, the mining exploitation con-
cluded at cycle 7, corresponding to the 12" month. This
results in the exploitation volume V remaining unchanged at
78000 m? from that cycle (Fig. 4b). However, land subsid-
ence persisted beyond cycle 7, as shown in Figure 3. Conse-
quently, at the same measured point, the same volume of
78000 m? yields different subsidence, as shown in Figure 4a.
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Figure 4. Relationships between measured subsidence 7 and input
variables: (a) accumulated exploitation volume V;
(b) the change of accumulated exploitation volume V
over time; the solid black line in (a) corresponds to the
mean subsidence computed for each volume V

The black solid line in Figure 4a shows the mean subsid-
ence computed for each volume V, which confirms the general
trend that a higher volume corresponds to a larger subsidence.

The subsidence of a point changes over time depending on
the progress of mining exploitation, as depicted by the move-
ment of the chamber (Fig. 2). This movement, in turn, leads to
a change in the slope distance from the point to the chamber
center. As a result, the change of L depends on the location of
the measured point. More specifically, points 1-5 exhibited
increases in L over time, while points 11-22 appeared to un-
dergo decreases in L. In contrast, points 6-10 exhibited a
U-shaped trend, i.e., L decreased during initial epochs before
increasing during the later epochs (Fig. 5a). These trends pro-
pagate to the relationship between L and the subsidence 7, as
shown in Figure 5b, in which points 1-5 indicate an increase in
L corresponding to an increase in land subsidence.

Conversely, an opposite trend is observed in points 11-22,
in which the decrease in L corresponds to higher subsidence. A
U-shape trend can be seen in points 6-10, in which the decline
in L at initial epochs is followed by an increase at subsequent
epochs, leading to larger subsidence at each point. Like the
exploitation volume V, the distance L changed from Epoch 1
to Epoch 7 corresponding to the 12 month and remained
unchanged after the cessation of mining exploitation.

2.3. Artificial Neural Networks

ANNSs are among the most powerful artificial intelligence
tools in land subsidence prediction owing to their capacity to
learn complex patterns with large datasets, facilitating accu-
rate predictions [20]-[23].
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Figure 5. Changes in the slope distances from measured points to
the chamber center L due to mine exploitation:
(a) changes over time; (b) relationships with the mea-

sured subsidence 5

ANNSs are computational models inspired by the structure
of the human brain, and thus neural networks [24]. These net-
works are composed of interconnected artificial neuron layers,
which are divided into input, hidden, and output layers (Fig. 6).

Figure 6. Structure of artificial neural network with input, hid-
den, and output layers; the input layer involves four
nodes corresponding to four input features Y, L, V, and
t; the numbers of layers and nodes in the hidden section
are determined experimentally by the k-fold cross-
validation; the output layer involves one node corre-
sponding to the predicted subsidence

The input layer imports the input features and then passes
them through the hidden layers, in which computations are
conducted with a series of weighted connections to estimate
the predicted variables in the output layer. The weights are
initially assigned with random values in the input layer,
which are then propagated through the hidden and output
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layers. The weights are subsequently adjusted by optimiza-
tion algorithms, e.g., gradient descent and backpropaga-
tion [25]. In this way, ANN can accurately predict output
variables by adjusting the weights.

In an ANN, each layer involves one or more neurons de-
pending on the particular problem being investigated. In this
study, the input layer includes four neurons corresponding to
four input features Y, L, V, and t as mentioned above. The
hidden layer section includes one or more layers, each incor-
porating a number of nodes. In this study, the “optimal”
numbers of hidden layers, hidden nodes, and iterated back-
propagation epochs are experimentally determined by the so-
called k-fold cross-validation [26].

2.4. Model performance evaluation

To evaluate the performance of mining-induced land sub-
sidence prediction by ANN, two commonly used validation
metrics are employed in this study, including Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE).
Both RMSE and MAE measure the average magnitude of the
errors, i.e., the difference between measured and predicted
subsidence [27], [28]. While RMSE is sensitive to outliers
because it assigns higher weights to measurements with
larger errors, MAE is more robust to outliers because it is
less affected by the magnitude of errors [27]. Both RMSE
and MAE are used in this study because of their complemen-
tation to each other. RMSE and MAE are estimated using the
equations provided below [27]:

A2
N (e _f
RMSE = —2.21(77[.1 ) ; @
T
MAE:w, ?
where:

niand 7; — the measured and predicted subsidence;

n —the number of validated measurements used to esti-
mate RMSE and MAE.

The difference between measured and predicted subsi-
dence #i — n; is prediction error 4.

3. Results and discussion

In this study, we test the prediction of mining-induced
surface deformation by ANN. With a total of 12 measured
epochs at a 2-month interval, as shown in Section 2.2, we
apply an ANN model with the first 9 epochs selected as the
training set, and the remaining 3 epochs selected as the test
set. This is to test the influence of the time separation be-
tween measured epochs and the interpolation time, i.e., at 2,
4, and 6 months after the last measured epoch. We apply an
ANN network with the Rectified Linear Unit (ReLU) chosen
as the activation function in the hidden layers [29]. ReLU is a
frequently used function in both classification and regression
problems due to its simplicity, requiring less computation
compared to other functions, such as Sigmoid (a.k.a Logit of
LogsSig) [30] or Tanh [31]. With the aim of predicting sur-
face subsidence, the regression problem is used, thereby no
activation function is applied to the output layer. Instead, a
weighted sum is used. Additionally, the objective of this
study is to predict surface subsidence with the highest possi-
ble precision, which is usually represented by RMSE; there-
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fore, Mean Squared Error (MSE) is used as the lost/cost
function, and MAE is used as the metric. This function, to-
gether with the backpropagation algorithm [32], is applied to
estimate the model parameters, utilizing the Root Mean
Square Propagation (RMSProp) optimizer [33].

To identify the most appropriate network structure, a
k-fold cross-validation is adopted [26]. k-fold cross-
validation is a special case of validation in machine learning
applied to small datasets. It is adopted to select the best mo-
del hyperparameters, including the numbers of hidden layers,
hidden nodes, and iterated epochs. Here, a 4-fold cross-
validation is applied based on the number of available in-
stances. Specifically, 4 groups of contiguous measured
epochs are selected from the 9 training set measured epochs.
In each fold step, one group is held out as the validation set,
while the remaining 3 groups are selected as the reduced
training set. The ANN model is then trained based on this
reduced training set. The model with associated parameters
derived from this training step is then applied to the valida-
tion to estimate the validation RMSE/MAE. The final
RMSE/MAE is then derived by averaging over the 4-fold
steps. This 4-fold cross-validation is applied to all hyperpa-
rameters in sequence. In this way, the best model with asso-
ciated parameters is selected if it is of the smallest validated
RMSE/MAE. In each examination to select the best model
hyperparameters, normalization and standardization are ap-
plied to the dataset [34].

We first examine the “optimal” number of hidden layers
in the model, keeping other hyperparameters fixed. Specifi-
cally, to minimize the computation burden, a model with
16 hidden nodes (i.e., the nodes in the hidden layers) and
100 iterated epochs is utilized. This model is used to test
different numbers of hidden layers, ranging from 1 to 7. The
relationships between the RMSE/MAE of the training and
the validation sets and the number of hidden layers are
shown in Figure 7a. The results indicate that the mean
RMSE/MAE of the training set (dashed lines in Figure 7a)
continuously decreases until 7 hidden layers, with little im-
provement from 6 hidden layers onward. In contrast, the
mean RMSE/MAE of the validation set (solid lines in
Figure 7a) decreases from 1 to 5 hidden layers, but begins to
increase from 6 hidden layers. This suggests that the model
likely starts overfitting at 6 hidden layers, and that 5 hidden
layers are the most appropriate for the final model structure.
Figure 7a also shows that a higher number of hidden layers
requires a longer mean computation time. The mean compu-
tation time increases almost linearly between 1 and 5 hidden
layers, but a significant increase of about 30% at 7 hidden
layers. With 5 hidden layers, the mean RMSE and the mean
MAE of the training set are 18 and 12 mm, respectively,
while those of the validation set are 36 and 26 mm, and the
mean computation time is 1.7 seconds.

With 5 hidden layers assigned to the model, we then
examine the most appropriate number of hidden nodes, i.e.,
the nodes in the hidden layers. Like the previous test on the
number of hidden layers, to minimize the computation cost,
the number of iterated epochs is fixed to 100, and the
number of hidden nodes is tested as the power of two, from
2 (i.e., 2%) to 1024 (i.e., 2%9). For the sake of simplicity, the
same number of nodes is used in all 5 hidden layers.
The results in Figure 7b indicate that 64 hidden nodes are
the best in both mean RMSE and MAE of the training and
validation sets.
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Figure 7. Relationships between the mean RMSE (red) and MAE
(blue) of the training set (dashed lines) and validation
set (solid lines) with the ANN model parameters in
k-fold cross-validation: (a) the number of hidden layers;
(b) the number of hidden nodes; black lines in both sub-
figures indicate the corresponding computation time

The mean RMSE/MAE reduce significantly from
2 hidden nodes (at 172 mm and 94 mm with the training set,
and 147 and 103 mm with the validation set), to 64 (2°) hid-
den nodes (at 18 and 12 mm with the training set, and 46 and
32 mm with the validation set), before increasing from 128
(27) hidden nodes. Like the test on the number of layers, a
longer computation time is required for larger numbers of
hidden nodes (see the black line in Figure 7b).

We then examine the most appropriate number of iterated
epochs used in the backpropagation algorithm of the ANN
model. Here, the “optimal” 5 hidden layers and 64 hidden
nodes are adopted, while the number of iterated epochs is
changed from 1 to 1000 epochs, with the results shown in
Figure 8. As the results show a fluctuation in both mean
RMSE (Fig. 8a) and MAE (Fig. 8b), we apply a 10-epoch
moving average to smooth the results (see blue lines in Fi-
gure 8). The results suggest that a higher number of iterated
epochs leads to a lower moving average mean RMSE/MAE
for both the training and validation sets, with a significant
improvement observed between 1 and around 100 iterated
epochs. The minimum moving average RMSE and MAE for
the validation set are found at 240 iterated epochs, at 30 and
20 mm, respectively (see black dashed lines in Figure 8). The
computation time exhibits a linear trend according to the
change in the number of iterated epochs, with the “optimal”
number of iterated epochs corresponding to a mean computa-
tion time of approximately 3.2 seconds.
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the corresponding computation time and blue lines indi-
cate a 10-epoch moving average; black dashed lines in-
dicate the best number of iterated epochs in terms of the
mean RMSE/MAE of the validation set

The “optimal” hyperparameters of the ANN model have
been obtained as 5 hidden layers, 64 hidden nodes, and
240 iterated epochs. These “optimal” parameters are then
adopted to predict mining-induced land subsidence over the
study area of the Mong Duong underground mine. As men-
tioned above, we predict subsidence for the last three meas-
ured Epochs 10, 11, and 12 corresponding to the 18", 20™
and 22" months. The predicted results for the 22 measured
points are shown in Figure 9, and their performance evalua-
tion is shown in Table 1.

Table 1. Performance evaluation of the test set (unit — mm)

Epoch RMSE MAE
Epoch 10 22 13
Epoch 11 31 20
Epoch 12 37 24

The good fit between the blue and orange lines in Fig-
ure 9 indicates the effectiveness of the proposed ANN model
in accurate land subsidence prediction. Both the RMSE and
MAE of the predicted land subsidence depend on the time
separation between the last measured epoch and the predicted
epoch. Within two months from the last measurement,
RMSE/MAE of 22 and 13 mm are observed for Epoch 10.
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Figure 9. Mining-induced land subsidence predicted by ANN for
the 22 measured points over the three test epochs:
(a) Epoch 10; (b) Epoch 11; (c) Epoch 12; (d) absolute
interpolation error of the 22 measured points at the
three interpolation epochs

These numbers increase to 31 and 20 mm for Epoch 11
(4 months from the last measurement), and 37 and 24 mm for
Epoch 12 (6 months from the last measurement) (Table 1).
The dependence of the interpolation error on the time separa-
tion between the last measured epoch and the interpolation
epoch is confirmed by Figure 9d, indicating the absolute
interpolation error, i.e., the absolute difference between
measured and predicted subsidence.
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While this study has demonstrated favorable outcomes in
predicting underground mining-induced subsidence using an
ANN-based approach, there is a recognized need for future
research aimed at refining prediction performance. The cur-
rent study utilized a time series spanning 12 epochs over
22 months but given the continuous generation of extensive
data from underground mining activities, incorporating more
recent measurements is essential for enhanced accuracy.
Furthermore, the study employed measurements in a 2D
profile along the measurement line (refer to Figure 2). Ex-
panding the measurement configuration to a 3D surface is
anticipated to bolster prediction performance, capturing the
movement of the entire surface rather than being limited to a
single profile. To advance predictive modeling, particularly
in understanding subsidence patterns, more sophisticated
approaches such as deep learning can be explored. Additio-
nally, in instances where the time series of deformation
measurements () is available without corresponding model
inputs, e.g., L, Y, V in this study, the model may not function
effectively. In such cases, adopting a direct or recursive uni-
variate prediction model, such as long short-term memory,
which uses past subsidence as inputs to predict future subsi-
dence, is recommended.

4, Conclusions

This study has applied ANN to predict land subsidence
measured by GNSS over the Mong Duong underground
coal mine, in Quang Ninh, Vietnam. There were 22 points
measured with 12 epochs, which were divided into the
training set for the first 9 measured epochs, and the test set
for the last 3 measured epochs. Land subsidence was mea-
sured by GNSS for each epoch, together with the positions
of ground points in the direction of the main trough cross-
section, the distance from the chamber center to the ground
monitoring points, the accumulated exploitation volume of
extraction space, and the measured/recorded time. These
four measurements were used as inputs for the ANN model
to predict land subsidence.

The hyperparameters of the ANN model, including the
number of hidden layers, hidden nodes, and iterated epochs,
were determined by k-fold cross-validation. Subsequently,
they were utilized to estimate the model’s parameters by the
training set and predict land subsidence for the test set. The
“optimal” hyperparameters were found to be 5 hidden layers,
64 hidden nodes, and 240 iterated epochs. The proposed
ANN model with “optimal” hyperparameters found in this
study was demonstrated to be a good tool for underground
mining-induced land subsidence. Both RMSE and MAE of
the predicted land subsidence depended on the time separa-
tion between the last measured epoch and the predicted
epoch. Within 2 months from the last measurement,
RMSE/MAE were found at 22 and 13 mm for Epoch 10.
These numbers increased to 31 and 20 mm for Epoch 11
(4 months from the last measurement), and 37 and 24 mm for
Epoch 12 (6 months from the last measurement).
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IIporno3yBaHHs NPOCiTaHHA, CIPMYMHEHOI0 MiA3¢MHUMHU FIPHUYNMH POOOTAMU:
niagXig Ha 0CHOBI ITY4YHOI HelPOHHOI Mepeki

JLK. Hryen, T.T.T. Jle, T.I'. Hryen, [I.T. Tpau

Merta. [IporHo3yBaHHs IPOCiJaHHs 3¢MHOI IIOBEPXHi PH MiJA3eMHOMY BUI0OYBaHHI BYTiIUIS Ha OCHOBI 3aCTOCYBaHHS IITYYHOI HEHpPOH-
Hoi Mepexi (IIIHM) nns edexTuBHOrO ynpaBiiHHS 3eMEIbHHMH pecypcaMH Ta IUIaHYBaHHS iHPPacTpyKTypH Ha HpHKIaii maxTtd MoHr
Hyownr y Kyanr Hins, B’eTHam.

Metoauka. Y moneni LIITHM, 3anpomnoHoBaHoi y IbOMY AOCIIIKCHHI, YOTUPH MMOKA3HUKU 3aCTOCOBYIOTHCS SIK BXiJHI JaHi: HOJOKEHHS
HA3eMHHX TOUYOK Y HANpPSMKY OCHOBHOTO HONEPEYHOTo Iepepizy koa00a, BiACTaHb BiJ IEHTPY KaMepu (BHPOOJICHOTO MPOCTOPY) A0 Ha3eM-
HUX TOYOK CIIOCTEPEKEHHS, HAKOMYCHNH eKCIUTyaTalifHui 00cAT BUIMKOBOTO MPOCTOPY Ta BHMIpsIHUI/3apeecTpoBaHuil yac. Becy Habip
aHUX 13 12 BUMIpSHUX €T0X, IO OXOIUTIOIOTH 22 MicAli 3 2-MICSYHAM TEPioOM MMOBTOPEHHS, PO3/ALTIEHO Ha HaBYAIbHY BHOIPKY VIS Iep-
mWUX 9 BUMIPSHHUX €M0X Ta TECTOBY BUOIPKY /IS OCTaHHIX 3 BUMIPSIHHX €roX. K-KpaTHa Kpocc-Basliallisi CII0YaTKy 3aCTOCOBYEThCS 10 HaB-
YaJpHOI BHOIPKH, 00 BU3HAUUTH HAMKpaIlli TineprnapaMeTpy MOJeNi, SKi MOTIiM NPUHMAaIOThCs Ul TPOTHO3YBAHHs MPOCIIAaHHS IPYHTY Y
TecTOBil BUOIpLI.

PesyabTaTn. BussieHo, 1o HafKkpaluMH rinepnapaMmeTpaMy MO € 5 IPUXOBaHUX HIapiB, 64 npuxoBaHi By3iau Ta 240 iTepoBaHHX
enox. BusHadeHo, mo cepennpokBaaparuana noxubka (CKII) i cepenns abcomrorHa moxubka (CAIl) mporHo30BaHOTO MPOCiTaHHS IPYHTY
3aJekarb BiJf 4acy, PO3IUICHOTO MiX OCTaHHBOIO BUMIPSHOIO €IIOXOI0 Ta MPOTHO30BAHOIO €rmoxor0. [IpoTsarom 2 MicsMiB micis OCTaHHIX
suMiproBadb CKII i CAII cranoBmsats 22 i 13 mm ans enoxwu 10, siki 36iumemryrorsest 1o 31 120 mm st emmoxu 11 (4 micsiii 3 MOMEHTY OCTaH-
HBOTO BUMIipIOBaHH:) Ta 37 1 24 MM 115t eroxu 12 (6 MicsIiB 3 MOMEHTY OCTaHHBOTO BIMIiPIOBAHHS).

HayxoBa HOBH3HA. Y [IbOMY TOCII/KEHHI 3alIPOMOHOBaHO HOBY Mojienb [ITHM i3 BiAMOBiAHUMY “ONTUMAIBHUME TileprapaMeTpaMu
JUISL TPOTHO3YBaHHS MPOCIIaHHS IPYHTY, CIPHYMHEHOTO IMTiI3EMHUMH TipHUYUMH POOOTaMH.

IIpakTnuna 3naunMicThb. [IponoHoBana B nanoMy nocnimkeHHi Mojens [ITHM e rapaum Ta 3pydHHM iHCTPYMEHTOM JUIsl OL[IHKH MPO-
CiTaHHS IPYHTY, CIPHYMHEHOTO MiPHUYUMHU poOOTaMH, sika Moxe OyTH 3aCTOCOBaHa JI0 MiA3eMHMX IaxT y npoBiHuii Kyanr Hinb, B’eTHaMm.

Knwouosi cnosa: npocrosysanns npocioanis, niozeMHna waxma, MawuHHe HAGYans, wmyyna neiiponna mepeca (LLLHM)
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