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Abstract

Purpose is to improve analytical technique to calculate strength of cylindrical rock samples taking into consideration
standard horizontal stresses.

Methods. Mathematical modeling of cylindrical rock sample breakage under the truncated-wedge destruction was per-
formed taking into consideration the standard horizontal stresses using four experimental characteristics (i.e. k being shear
strength; f. and u being contact and internal friction coefficients; and E being elasticity modulus) as well as comparing the
design strength with experimental data obtained in the process of uniaxial compression.

Findings. The technique makes it possible to identify both maximum strength and residual strength of cylindrical rock sam-
ples using four indicators of properties which can be simply defined by experiment. Comparison of the analytical strength limits
and experimental data, obtained in terms of uniaxial compression, supports the idea of high efficiency of the proposed technique.

Originality. For the first time, analytical modeling of cylindrical rock sample breakage has been performed in terms
of the truncated-wedge destruction taking into consideration the standard horizontal stresses as well as contact and internal
friction parameters.

Practical implications. The technique advantage is to apply promptly the calculation results in the context of industrial en-
terprises since their environment helps apply simple procedures to define indices of physicomechanical characteristics of rocks
for determination of stability of underground structures and reduction of energy consumption while disintegrating in open pits
and mining and processing complexes.
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1. Introduction destruction, is the most important material capability [4]-

Physicomechanical characteristics of both mined and as-  [6]- The information is essential for core cylindrical sam-
sociated rocks are among the most important information ~ Ples obtained at mining enterprises while drilling since the
data required to control stress and strained state of rock mass ~ data may be used promptly in operation. _
and identify stability of underground structures especially Despite the advantage of such experimental diagrams,
concerning face areas [1], [2]. The rock characteristics are ~ developed by different authors using various rocks from
also used while mineral processing; it especially concerns ore ~ Various open pits and mines, they cannot ensure sufficient
material preparation from the viewpoint of mining and smelt- ~ reliability of bearing capacity of rock masses [7]-[9] since
ing procedures, preparation of building materials, chemical ~ the diagrams, distinguishing in their types for different rocks
production etc. In this context, the improved efficiency of ~ @nd sample dimensions, are only external characteristics.
rock mass and another hard material destruction with a re-  They prevent from revealing of internal local processes of
duction in energy costs is the most topical issue [3]. First of ~ Progressive cracks starting the process when certain share of
all, it concerns mines, open pits, mining and processing ~ the material is getting beyond the load varying the bearing
integration works, stone-processing enterprises, processing ~ capacity of the sample as well as rock mass; from describing
of structural components of the complexes on emergency ~ 9eometry of the cracks and regularities of changes in vertical
procedures etc. In the process of the problem solving,  Stresses within their points. Hence, to understand internal
strength of prismatic and cylindrical samples of the studied ~ Processes of evanescent curve formation, it is desirable to
materials as well as their residual strength, determined in  “100k within” a sample, and evaluate the phenomena taking
terms of axial stress-strain diagrams of their evanescent  Place there [7].
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Researchers mention that rock masses are characterized
by high values of horizontal stresses [10], [11] playing a key
role while assessing stress and strain state (SSS) of the rock
masses [12], [13]. However, it is not clear how to assess the
impact. Hence, it is required to develop an analytical tech-
nique helping calculate both limits and residual strength of
samples with the knowledge of indicators of rock properties
defined with the help of simple procedures being accessible
for mining enterprises. Earlier, attempts have been made to
simulate mathematically the processes of sample break-
age [1], [8], [13]. In such a way, paper [13] bases theoretical
substantiation of bearing capability of extraction pillars and
mine workings on the approximation of evanescent curves
relying upon different hypotheses and methods of plasticity
theory, i.e. the associated flow law of the limit state under
plain and axisymmetric deformation. Immediately, the design
schemes are complemented by the values of horizontal
stresses o, assuming antecedently their availability within the
rock mass. In this regard, uniform distribution of rock pres-
sure, being equal to yH, is adopted on the contact plains. A
deformation curve is described by means of a piecewise
approximation while emphasizing that experimental data
approximation may involve piecewise-linear dependencies
having horizontal asymptotes. Earlier, certain efforts have
also been made to simulate mathematically rock breakage
processes [14]-[17]. Nevertheless, the models have not been
perfected to the level of the completed analytical methods
calculating strength of rock samples.

Prismatic or cylindrical samples are applied to identify
rock strength experimentally. Book [18] elaborates methods
of analytical strength determination for prismatic samples.
Maybe, cylindrical core drilling samples are more popular
than prismatic samples while determining experimental
strength limits. Hence, the necessity arises to develop analyt-
ical techniques calculating strength for cylindrical samples.
Paper [19] has developed analytical procedure to calculate
parameters of stress-strain diagrams in terms of cylindrical
samples where the truncated-wedge destruction was applied.
However, the technique has several disadvantages. One of
them is impossibility to take into consideration the standard
horizontal stresses resulting inevitably from the contact pres-
sure between a press plate and sample while developing their
fracture diagrams. Secondly, paper [19] has proposed follo-
wing distribution formula for the standard contact stresses as
applied to a cylinder circle (Fig. 1):

2\/ux x2 Afe lux 2

M

O'yi =Gy0

where:
— current standard vertical stress on the contact sample

plain, Pa;

oyo — standard vertical stress within the angular point of a
sample, Pa;

fe— contact friction coefficient;

x — abscissa within the considered point;

h — sample height;

u — diameter of a cylinder circle.

Prandtl formula on the contact stress distribution for prismatic
unitary width sample has been applied as an analogue [18]:
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Figure 1. Scheme of the bearing surface shaping during symmet-
rical crack development within a cylindrical sample

Nevertheless, record (1) of stress distribution has a disad-
vantage. Under boundary conditions x = 0, stress is ayi =0
instead of ayi = ayo as it occurs in terms of Formula (2). Con-
sequently, the contact stress distribution record for a circle
should be revised. The improvement of contact stress distri-
bution needs derivation of new analytical mathematical ex-
pressions to define specific efforts on the contact surfaces
between the plates and a sample to compare with calculation
results of the efforts stated by paper [19]. Moreover, it is
important to involve the impact of horizontal stresses, result-
ing from shear stresses and being shaped by the contact fric-
tion, on the sample strength.

Relying upon the abovementioned, the paper formulates
following tasks:

1) improve the analytical technique to identify parameters
of axial stress-strain diagrams under the truncated-wedge
destruction of cylindrical rock samples using their four ex-
perimental characteristics which can be defined in laborato-
ries of mining enterprises;

2) involve in the calculation procedure the impact of hori-
zontal stresses on the sample stress and substantiate it relying
upon the specified distribution of the standard contact stresses;

3) compare convergences of the design data with the ex-
perimental data ignoring the standard horizontal stresses,
resulting from shear stresses and being shaped by the contact
friction, and taking them into consideration.

2. The research methods

Paper [19] elaborates the methods for analytical determi-
nation of cylindrical sample strength in terms of the trunca-
ted-wedge destruction. In this context, we will represent only
the end Coulomb formula [15], [19]-[21]:
®)

>

k=|Ta|—,UO'a,

where:
— effective shear stresses (Pa) at a sliding surface (SS);
k — shear strength of a material, Pa;
— active shear stress, Pa;
u — internal friction coefficient;
— normal stress (Pa) on the SS.
Inequality (3) should be understood as follows: the de-
struction will happen if left side is larger than the right one.
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Crack is formed at the SS during the destruction. According
to a plain deformation model and while knowing point coor-
dinates of one or two cracks, it is possible to identify bearing
share of a sample being equal to the initial area of the latter
exclusive of its share which got out of load in the process of
a crack development. The sample share which got out of load
is defined through abscissa values of the crack point as
x-yctg a where y is ordinate of the crack point, m; and a is
incidence SS angle (rad) within the crack point towards ab-
scissa axis OX. If gy (Pa) stresses within the crack point are
known as well as its coordinates and regularities of contact
stress distribution within the share which did not get out of
the load (i.e. bearing part of the sample), it is possible to
identify a strength value of the sample if rates of four proper-
ty indicators are available. They are shear resistance limit k
(Pa); external f;c and internal x friction coefficients; and elas-
ticity modulus E (Pa). Taking into consideration the sym-
metry of semicircles of a cylindrical sample cut, calculation
is performed for any of them; for instance, the left one
(Fig. 1). Subsequently, the specific effort on the bearing
share of a cylindrical sample is the true fracture stress at the
moment of crack formation:

(SO—[IF(x)dXJrZ;CzF(x)deB

(SO - )[( F(x)dx J
0 i
where:

p — specific effort, Pa;

oy — standard stress within the crack points, Pa;

So — initial semicircle area, m?;

F(x) — change function of a semicircle area getting out of
load at the moment of crack formation, m?.

Demonstrate the sample breakage using a scheme in
Figure 2. Locate the coordinate axis centre in the top left
corner of the sample. Within the upper plain of a left longitu-
dinal sample half, both contact z. (Pa) and internal z,. (Pa)
shear stresses are positive; they are negative within the lower
plain. On the right half, the signs have opposite values. The
truncated-wedge form of rock sample destruction is charac-
terized by lack of SS crossing with a vertical symmetry axis.
It crosses lower contact plain.

Since the deformation results in convex shapes of sample
edges, apply pairing law of shear stresses within the angular
points. Assume that the development of deformations takes
place along SS: from the left side along SS &; and from the
right side along SS ¢&. Taking into consideration SS sym-
metry, describe formation of the left SS &. As Formula (4)
explains, the computation should involve calculation formu-
las for stresses within the crack points at the moment of its
development. In addition, as it follows from Formula (4), the
solution needs knowledge of distribution regularity of the
standard contact stresses. Formula (4) implementation in-
volves an expression of parameters of their varying areas
through the areal integrals.

It follows from Figure 1 that areal element is equal to a
product of a segment chord length by an abscissa differential x:

®)

(4)

p=oy

ds=2 ux—xzdx,

where:
u — circle diameter, m.

45

X

+7i —Tk

+‘[k

oyo

al

y

Figure 2. Scheme of standard and contact shear load formation
and crack development along the sliding surfaces

Then, represent Formula (2) as follows:

1+ 4fCX\/UX—X2

" : (6)

O'yi =0

Hence, relying upon Expression (6) and according to
Formula (4), define a value of the specific effort on the bear-
ing sample share being equal to zu?/8 (i.e. semicircle area)
exclusive of an area which got out of the load at the moment
of crack formation:

Luz_}‘ 1 2fcxxlux—x2 dx
i h ()
p=oy !
Luz >j( ux—x%dx
8 i

Using p stress, a line of true stresses is drawn on Formu-
la (7). Relative diagram is recorded on the press since the
former registers automatically the stress on the bearing share
of the sample; the initial area is assumed while calculating
the space. Consequently, the analytical true diagram should
be transformed into the relative one while multiplying the
specific effort values of the true diagram by bearing area-
initial area ratio. It is required to define a value of parameter
one being the current value of a sample strength within the
evanescent branch. For the purpose, express the area, getting
out of the load in the form of a segment (Fig. 1) using the
known Formula:

2
Sambv =%(¢—sin ¢)! (8)

where:
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2
. u-— 2x§
¢ = 2arcsin 1—( ] . 9
u
So, the segment area (Fig. 1) in the process of crack de-
velopment is:

7[2

X

2
S; =%(¢—sin¢): Z )

x(arcsin 21/ux§ - xé2 —2(1—2x§)1/ux§ - xé2 )

Taking into consideration the fact that semicircle
area is zu?/8, record the formula to identify strength within
the evanescent branch of axial stress-strain diagram
in the form of:

8p m? 1 : 2
o :—Z[T—Z[arc5|n2,/ux§—x§ -

U

-2(1- ZX)JUXé: - x§2 D

Use a guide [20] to solve Formula (7) integrals.

(11)

In such a way, the specific effort on the contact plane will be defined through the Formula:

ﬂ_uz_{_l{arcsin 24/ux§ - x§2 —2(1—2x§)4[ux§ - x§2 H+
8 4
p=0, (—uxé +x§224/ux§ —xéz +(2x§—u)48/ux§ —x§2 ~
2f
e u? [Z—arcsin 2,/ux§ —xgzj
16

Complete problem solution should involve determination
of the standard stress o, within a crack point for Formu-
la (12). Paper [19] states a method to define the stress relying
upon Coulomb criterion; horizontal stresses are ignored.
Based upon the balance of forces on the extreme plain, pa-
pers [20], [22] derived the expression to calculate the stand-
ard horizontal stress, Pa:

k
oy :M(sinp—\ll—bz j+0y ,

cos p

(13)

where:

b=fo,/(k+ ua);

p = arctg u are angle and internal friction coefficient, rad.

According to A.D. Tomlyonov and [23], increase in shear
resistance within the angular point o (Fig.2) is defined
through the condition that a force application technique can-
not influence stress distribution within the sections quite
distancing from the application places. The condition is ex-
pansion of Saint-Venant’s principle used in the elasticity
theory. If x = 0 in the unloaded section then:
h/2

[ o.dy=0, (14)
0

. (k(1+,ud)~(1+8inp 1-b? D~exp(2u(ﬁ§ +ﬂb))

Y u 1—Sinp~4/1—b§2
(k +uc, )(1— Sinp, /1—b§,2 j

kp = ; (18)
(1+,ud)[l+8inp fl—b[,;]-exp(wﬂb)
b = T (19)
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where:
h —a sample height, m.
While inserting o, value (13) into expression (14) after

integrating, identify:
2
fcay( _hy)

(15)
k+ uoy

C= %abs k arcsin

To simplify the record in future, introduce the indication:

2
fcay ( _hyj

(16)
k+ uoy

d = —arcsin
2

feoy (1—2—hyj expression represents shear stress attenuation

along y ordinate. According to [18] method, o, (Pa) stresses
within the crack point on the left SS &; are identified using
the equation system:

, Where: 17)
2f
fe-oy, £1+hcxbj |
by = - : (20)
K 21,
btH Oy, 1+Txb
1 b: cos p
B = arctg——————; (21)
sinp— 1—b§
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by, cos p
sinp— 1—b§

1arctg (22)

Bo

where:

ko, — effective shear stress within b point of SS & emer-
gence to the contact surface, Pa (Fig. 2);

xp — b point abscissa, m;

S and fp — rotation angles of SS & within the crack point,
and within b point respectively, rad.

SS &incidence angle o (rad) is defined through the Formula:

T, P

(Zé: 2 + 5 +ﬂé: , (23)
where:

p = arctg u is internal friction angle, rad.

Apply Hooke law to identify deformations being parameter
two of the diagram. Taking into consideration the standard
horizontal stresses, the formula to calculate deformations is as:

_ P—voy
E

where:

v — Poisson ratio;

E — elasticity modulus, Pa.

Use of Formula (11) in addition to (12-24) Expressions
makes it possible to apply iteration method to identify on the
PC parameters of the true and conditional axial stress-
deformation diagrams obtained by researchers with the help
of presses under the truncated-wedge destruction of cylindri-
cal samples in the form of an evanescent branch function.

Determine the basic regularities of a sample destruction
process based upon the abovementioned. Take following
conditions as an example: k = 22 MPa; 40° (« = 0.839); and
f=0.25. In the context of boundary conditions, contact
friction f; is among the most important parameters. Accor-
ding to Saint Venant principle, friction attenuates in terms of
certain rule while distancing from a contact surface [23].
Along the normal stress action through a body, researchers
have adopted a linear law of contact shear stress attenuation

, (24)

under the formula fio = f.o, (1—2—hy). Prandtl has proved
that in our situation, the normal o, stress cannot depend upon
an ordinate. Consequently, dependence of the contact shear
stresses upon the contact friction coefficient becomes obvious.
To calculate destruction parameters within the progres-
sive crack point, programs have been developed for PC in-
volving (14)-(22) Equation system to solve the problems
using iteration method. Vertically, computer screen was divi-
ded into 8 lines; horizontally, it was divided into 12 columns.

3. Results and their discussion

The calculation has helped identify that a contact friction
coefficient within a crack point depends linearly upon the
ordinate of a sample crack point (Fig. 3, straight 1) while
changing a positive sign to the negative one within the hori-
zontal axis of symmetry. The regularity is also typical for
rotation SS f: angle with negative sign change to a positive
one (Fig. 3, straight 2). The angle depends directly upon a
friction coefficient variation. B, angle (Fig. 3, straight 3) is a
constant value since it represents rate of SS rotation angle
within one point of its emergence within the lower contact
surface. Inclination SS a angle (Fig. 3, straight 4) of an ordi-
nate is of increasing nature.
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Figure 3. Dependencies of a contact friction coefficient, rotation
angles, and inclination SS ¢ angles of the crack point
ordinate if kn =10 MPa, p =40° and f.=0.25: 1 - con-
tact friction coefficient fi; 2 — rotation angle g¢; 3 — rota-
tion angle fo; 4 — inclination angle a

Values of the geometrical parameters form the numerical
abscissa values of a crack point x as well as power parame-
ters depending upon the values of a crack point ordinate
(Fig. 4). The geometrical parameters also involve the bearing
area dependence, i.e. a sample area which got beyond load
during the crack progress. Relying upon Formula (11), where
p parameter is excluded, we define the bearing area depend-
ence on the ordinate (Fig. 4).

S
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0
0 0.2 0.4 0.6 0.8 y

Figure 4. Dependence of a relative sample bearing area upon a
crack point ordinate if k = 10 MPa; p = 40°and f. = 0.25

Identify regularities of power parameters of the crack point
ordinate value (Fig. 5). Abscissa of the crack point is defined
through x = ytga: formula (curve 1). Equation system (14-22)
helps identify vertical stresses o, since the formulas have linear
regularity to be increased (straight 2). k, parameter of effective
shear stresses within the point of SS getting to the lower con-
tact surface is defined using Formula (18). Dependence of kj
parameter is expressed through the increasing quadratic func-
tion (curve 3). Its values within the end point are equal to shear
strength of the destructed material k. Contact shear stresses
inside the sample form standard horizontal stresses o, defined
using Formula (13). Now, describe the last-mentioned im-
portant parameter (i.e. specific effort p) identified through
Formula (12). The specific effort determines the stress acting
at the surface of the bearing share of the sample.

Use of Formula (11) in addition to (12)-(24) Expressions
makes it possible to apply iteration method to identify on the
PC parameters of the true and conditional axial stress-
deformation diagrams obtained by researchers with the help
of presses under the truncated-wedge destruction of cylindri-
cal samples in the form of an evanescent branch function

oc = v (¢) (Fig. 6).
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Figure 5. Dependencies of vertical standard stresses ay; reference
shear stresses kp; standard horizontal stresses ax; and
specific efforts p within the crack point upon the crack
ordinate if kn = 10 MPa; p = 40° and f. = 0.25: 1 — verti-
cal standard stresses ay; 2 — horizontal standard stresses
ox;; 3 — reference shear stresses ko; 4 — specific efforts p

oc, MPa
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Figure 6. Stress-strain diagrams of cylindrical samples under the
truncated-wedge destruction of cylindrical samples if
fc=0.25 and E = 2000 MPa: 1 — true diagram; (2)-(7) —
conditional diagrams: (2) if k=10 MPa and p =40°
(3) if k=10 MPa and p = 40° taking into consideration
ox; (4) if k=22 MPa and p = 40° (5) if k = 22 MPa and
p = 40° taking into consideration ex; (6) if k =22 MPa
and p =50°; (7) if k=22 MPa and p =50° taking into
consideration ox

0

Figure 6 demonstrates the functions in terms of different
values of rock characteristics for the samples which height
diameters are equal to unity. Analysis of the diagrams helps
draw the important conclusion: inclination angle of evanes-
cent curve o = y (&), being so-called decreasing modulus M
assumed by researchers as a constant material characteristic
similarly to elasticity modulus E [3], [13], depends upon
numerical values of rock characteristics; it is not a constant.
Many authors [3], [13] explain roundness of evanescent
branches right beyond the elastic strength by rock plasticity.
In our opinion, the roundness results from contact friction
and crack geometry.

The calculations support the idea that the truncated-
wedge destruction takes place if p>39° and f. is within
0.2-0.4. In the context of the truncated-wedge destruction,
compare the values of analytical strength of cylindrical sam-
ples which height and diameter are equal to unity, with the
experimental data borrowed from rock cadastre [24] obtained
by researchers with the help of presses. The cadastre contains
uniaxial compression data, rock shear strength data, and
internal friction angle. The comparison between analytical
strength and experimental data is summarized in Table 1
(rock ranking depending upon shear strength).
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Comparison between analytical data and experimental
ones has shown that average variation coefficient is 12.5% if
the standard horizontal stresses are ignored; the figure is
9.7% if they are taken into consideration. Correlation be-
tween analytical strength and experimental data confirms
high efficiency of the proposed technique to calculate
strength of rock cylindrical samples. The abovementioned
permits us to recommend the procedure for mining enterpris-
es if it is required to identify rock strength.

Consequently, the proposed analytical diagramming
technique based upon four physicomechanical rock charac-
teristics, easily identifiable by experiments, will help mining
enterprises determine more accurately stress-strain state of
rock mass and evaluate stability of underground structures
especially within the face areas. The characteristics are also
applicable for mineral processing specifically to prepare ore
materials for mining and smelting procedures; prepare build-
ing materials; for chemical production to improve the effi-
ciency of rock mass and another hard material destruction
with energy saving to disintegrate minerals in mines; open
pits; at mining and processing integration works; and at
stone-processing enterprises. They also can be used while
processing structural components under emergency and other
force majeure situations.

Further studies of frictional characteristics of rocks
(especially if their impact by working organs of machines is
taken into consideration under asymmetric or more complex
force application) may result in significant reduction of
energy consumption for disintegration in the processes of
mineral preparation.

4. Conclusions

Analytical procedure to identify the parameters of axial
stress-deformation diagrams under the truncated-wedge de-
struction of cylindrical rock samples has been improved with
the use of their four experimental characteristics (k being
shear resistance; f. and u being coefficients of contact and
internal friction; and E being elasticity modulus) which can
be identified in the laboratories of mining enterprises. The
technique advantage is prompt use of the calculation results
in a production environment.

The method is based upon a new, physically more sub-
stantiated formula of the standard contact stress distribution
to compare with the available ones; moreover, it takes into
consideration values of the standard horizontal stresses re-
sulting from contact friction between a press plate and a
sample. The technique helps improve reliability of parameter
computation in the context of standard stress-axial defor-
mation diagrams for the truncated-wedge destruction of cy-
lindrical rock samples.

The developed method identifying parameters of standard
stress-axial deformation diagrams for the truncated-wedge
destruction of cylindrical rock samples is recommended to be
applied by mining enterprises while rock strength deter-
mining. The truncated-wedge destruction shape of samples is
formed if p > 39° and f. is within 0.2-0.4.
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Table 1. Comparison of analytical strength of cylindrical samples and experimental data

Analytical strength limit

Variation coefficient

Internal . . . taking into Guide of
Shear L Experimental ignoring - - 0 0 -
Rock strength friction strength limit horizontal con5|.derat|on . % . % physu:_al_
angle horizontal interms  interms  characteristics
k, MPa oe, MPa stresses
p, rad stresses of o1 of o2 of rocks [24]
o1, MPa 02, MPa
Monazite 5.0 47 35.0 32.8 36.2 6.3 3.4 104
Monzonite 5.2 51 33.0 37.6 41.6 13.9 26.1 105
Aleurite 5.3 45 375 33.1 36.5 117 2.7 145
Aleurite 5.33 45 375 334 36.6 10.9 2.4 209
Monzonite 55 49 34.0 37.9 41.8 115 229 104
Monzonite 7.5 52 61.0 56.1 62.0 8.0 1.6 103
Heavily modified 75 52 66.0 56.1 62.0 15.0 6.1 104
Monazite
Monzonite 8.5 41 47.0 485 53.4 3.2 13.6 103
Sandstone 8.8 43 61.5 52.6 59.6 145 3.1 161
Aleurite 9.6 43 62.0 57.4 63.3 7.4 2.1 145
Sandstone 9.72 50 81.5 68.8 75.8 15.6 7.0 145
Black iron ore 10.0 45 86.1 62.0 68.9 30.0 19.9 67
Monzonite 10.5 52 85.0 78.6 86.5 7.5 1.8 104
Sametmagnetite 190 42 97.0 700 770 2738 206 67
Aleurite 12.0 42 75.5 70.0 77.0 7.3 2.0 208
Quartz 125 44 100.0 76.6 84.6 234 16.0 103
Black iron ore 15.0 42 97.0 87.6 94.4 9.7 2,7 67
Sandstone 16.5 42 126.0 96.4 106.4 235 15.6 145
Sandstone 174 49 126.0 120.0 132.3 4.8 5.0 161
sametmagnetite 920 40 1170 122.0 135.4 43 15.7 67
Monzonite 24.0 40 134.2 134.0 147.0 0.1 9.5 105
Monzonite 28.0 52 164.0 209.4 207.4 21.7 26.5 104
Sandstone 28.5 45 200.0 178.4 196.0 10.8 2.0 161
Monzonite 60.0 41 365.0 343.0 377.0 6.0 3.3 104
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BnockoHasleHH MeTOLy PO3PaxXyHKY MIITHOCTI IMJIiHAPUMYHUX 3pa3KiB
TipHMYHX NOPiX NPH 0THOOCHOMY CTHCKAHHI

JI. BacunbeB, M. Maiu, /1. Bacunses, B. Katan, 3. Pi3o

Merta. YI0CKOHANICHHS aHAJITUYHOTO METOJY PO3PAaXyHKY MeXi MIITHOCTI LMNIHAPHYHHUX 3pa3KiB TiIPCBKUX TOPiA MpU BpaxyBaHHI
TOPH30HTAIBHUX HOPMAJIBHUX HAIPY)KEHb.

Metoanka. MareMaTndHe MOJIETIOBAHHS IPOIECY PyHHYBaHHS IMTIHAPHIHUX 3pa3KiB TIpCHKUX MOPIJ HA MPUKIAI yCII€HO-KIMHOBOL
(opMu pyHHYBaHHS 3/IHCHIOBAJIOCS 3 YpaXyBaHHSIM T'OPH30HTAJBHUX HOPMAJIBHUX HANPY)KCHb i3 BUKOPHCTAHHAM YOTHPHOX EKCHEPHMEH-
TaJbHHUX XapakTepuCTUK (K — Mexi Mil[HOCTI 3CYBY, fc i yt — KOe(illieHTIB KOHTAKTHOTO Ta BHYTPIIIHBOTO TePTs, £ — MOIYJIS IPY’KHOCTI) Ta
3iCTaBJIEHHS PO3PaXyHKOBHX MEX MIIHOCTI 3 €KCIIEPUMEHTAIPHIMH JaHUMH, OTPIMaHUMH TP OXHOBICHOMY CTHUCKAHHI.

PesyabTaTu. Meton 103BOIsI€ BU3HAUYUTH MEXKY MILHOCTI Ta 3aJIMIIKOBY MILHICTh HWJIIHAPUYHUX 3pPa3KiB TIPCHKUX MOPiJ i3 BUKOPHC-
TaHHAM YOTHPHOX MOKA3HHUKIB BIACTHBOCTEH, SKI MPOCTUMHU CIIOCOOAMH MOXYTh OyTH BCTaHOBJICHI EKCIIEPUMEHTAIFHO. 3iCTAaBIEHHS PO3-
PaxyHKOBHX MEX MIIHOCTI 3 €KCIIEPUMEHTaIbHUMH JaHUMH, OTPMMaHUMH IIPH OJHOBICHOMY CTHCKaHHI, CBITYUTh PO BUCOKY pE3yJIbTaTH-
BHICTb 3aIIPONOHOBAHOTO METOLY.

HayxoBa noBu3Ha. [IepeBaroto MeToy € MOXJIMBICTH ONEPaTUBHOIO BUKOPUCTAHHS Pe3yJIbTaTiB pO3paxyHKy Ha BUPOOHUYUX ITiIpH-
€MCTBaX, TOMYy IO B IX yMOBax HPOCTHMH CHOCOOAMH MOXKYTh OyTH BH3HAUeHi NOKA3HHKU (Di3UKO-MEXaHIYHHX BIACTHBOCTEH TipCHKHX
HOPiJ ISl BU3HAYEHHS CTIMKOCTI MiI3EMHUX CIIOPY[l y [IaXTax Ta 3HWKEHHS CHEeprOBUTPAT IpH Je3iHTerpaunii Ha kap’epax Ta ['3K.

IpakTnyna 3HaYnMicTh. Briepiie nmpoBeseHo aHaIITHYHE MOJIETIOBAaHHS NIPOLIECY PyHHYBaHHS LIUTIHAPHYHUX 3pa3KiB TipCHKUX HOPiZ
Ha TPUKIAJl YCIYCHO-KIMHOBOI (JOpMH PYHHYBaHHS 3 ypaxyBaHHSIM TOPH30HTAIBHHX HOPMAIBHHX HAIllPy)KE€Hb, a TAaKOX BHYTPIIIHBOTO i
30BHIIIHBOTO TEPTSI.

Kntouosi cnosa: zipcoka nopooa, mexca MiyHOCmi, pyuHy8aHHs, MpiyuHa, HANPYHCeHHs, 0OHOOCHe CIMUCKAHHS
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