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Abstract 

Purpose is to elaborate innovative and computationally efficient algorithm to solve a problem of two-stage allocation of the 

resource occupying continuously the specified area as well as to demonstrate the behaviour of the corresponding software 

developed with the application of advanced geoinformation resources. 

Methods. The paper involves mathematical models of continuous problems of optimal set partitioning with additional con-

nections to describe two-stage problems of the material resource location-allocation. Methodological approach to the solu-

tion of such problems is based on the idea of their reducing to the problem of infinite-dimensional mathematical program-

ming for which it is possible to obtain optimal solution in the analytical form with the help of the duality theory apparatus. 

Findings. Mathematical and algorithmic apparatus to solve continuous problems applied for the fuel and energy complex 

enterprises has been developed making it possible to obtain partitioning of the deposit area into the zones, which are alloca-

ted to the first-stage enterprises exclusively. The algorithm operation is demonstrated in terms of the model problem solu-

tion. It has been defined that the benefit of such an approach is in the reducing of the infinite-dimensional programming 

problem to the problem of finite-dimensional nonsmoth optimization since the obtained computational formulas contain the 

parameters which determination requires solving the auxiliary problem of the nondifferentiable function optimization. 

Originality. Contrary to the previously developed one, the proposed algorithm does not stipulate solution of the linear 

programming problem of transport type at each step of the iteration process. Such a problem is solved only once to find 

the volumes of product transportation between the first-stage and second-stage enterprises after defining all the optimal 

solution components. 

Practical implications. Software implementation of the algorithm on the basis of the advanced geoinformation technologies 

and resources, in terms of the solution of raw material flow allocation, makes it possible to reduce total costs for the  

management of material flows and their accompanying service flows throughout the whole logistic chain beginning from the 

flow origin up to its arrival to the end user. 

Keywords: multistage problems, set partitioning, geoinformation technologies, location-allocation, nonsmooth optimization 

 

1. Introduction 

Previously, paper [1] considered a two-stage process of 

material flow allocation in transportation and logistic system, 

which structural elements were represented by mines (first-

stage centres) extracting coal being continuously distributed 

within a certain area, and enterprises consuming or pro-

cessing that coal (second-stage centres). In this context, it 

was stipulated that a specific mining territory (zone) was 

allocated to each mine. First, raw material flow moves within 

the system from each point of the zones under consideration 

immediately to the point of its accumulation at the corre-

sponding mine; then, the assorted resources are sent in the 

specified amounts to the enterprises acting as the consumers – 

thermal power stations (TPS), concentrating plants, and other 

objects. The mentioned paper show mathematical models of 

such multistage problems to allocate resources being distrib-

uted continuously within the defined area. 

For the first time, those problems were analysed in [2]. 

Their continuity was stipulated not only by the possibility to 

locate fist-stage centres at any point of the specified continu-

al set but also by the necessity to partition the set itself (or its 

share) into several zones. A method to solve the formulated 

problems is based on the idea of their reducing to the prob-

lems of infinite mathematical programming; optimal solution 

for those problems is possible to be obtained in analytical 

form by applying the duality theory aparatus. Though the 

obtained computational formulas contain the parameters 

subject to the determination concerning the fact why we need 

to solve auxiliary problem of the nonsmooth function, benefit 

of the described approach is in the idea that target function of 
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the resulting optimization problem depends only upon the 

finite number of variables. That makes it possible to apply 

any methods of finite-dimensional nondifferential optimiza-

tion to solve the problem. For instance, that can be ellipsoid 

methods [3], algorithms based on the Monte-Carlo me-

thod [4] or r-algorithms used traditionally while solving 

continuous problems of optimal set partitioning [5]. 

The paper is focused on the numerical algorithm of solv-

ing two-stage allocation of the resource occupying continu-

ously the specified area based on the mathematical apparatus 

described above. Contrary to the algorithm developed to 

solve similar problems in paper [6], that very algorithm does 

not involve the solution of problem of linear programming of 

transportation type at each stage of the iteration process. 

Such a problem is solved only once to find the volumes of 

product transportation between the first-stage and second-

stage enterprises after the defining of the rest of the optimal 

solution components. Software implementation of the algo-

rithm is performed involving modern geoinformation tech-

nologies and resources. The algorithm operation is demon-

strated in terms of the solution of a model problem of the 

optimization of two-stage material flow allocation, which 

may take place at fuel and energy complex enterprises, with-

out being stick to any available industrial objects. 

Owing to the formulation and solution of the correspond-

ing continuous problems of optimal set partitioning with the 

additional connections (OSPAC), it is possible to reduce 

transportation costs at fuel and energy complex enterprises 

involved in coal mining within the specified territory and 

coal transportation to the warehouses of the corresponding 

mines with further product supply to the end users [1]. 

Objective of the paper is to develop innovative and compu-

tationally efficient algorithm of problem solving and to 

demonstrate the behaviour of corresponding software deve-

loped on the basis of integration of the methods to solve 

OSPAC problems and geoinformation systems and resources. 

Topicality of such scientific studies is stipulated by cur-

rent development of geographically distributed multilevel 

companies including dozens of large enterprises dealing 

with full production cycles from the raw material extraction 

with its complex use and processing up to its transportation 

to the end users. 

Consider in brief the statement and mathematical model 

of the problem to optimize two-stage material flow allocation 

in terms of coal (as the allocated resource) mined within the 

newly developed deposit. 

1.1. Statement of the problem 

Assume that there is a certain territory with the known 

evaluation of the coal reserves and enterprises requiring 

specific amount of that coal. We should determine the areas 

to locate new mines within the specified territory and allo-

cate the mining area to each mine with minimum costs for 

coal accumulation and transportation to the mine warehouses 

and end user. At the same time, it is necessary to define both 

which mine should supply coal to a second-stage enterprise 

and what amount of coal is required to satisfy completely the 

needs in that resource.  

A mathematical model will apply following notations: Ω 

is area within which the resource is allocated and where first-

stage centres may be located, m2; ρ(x) is amount of resource 

at point x of set Ω, t/m2; N is number of first-stage centres; M 

is number of second-stage centres; S is total amount of the 

resource within the specified area, t; τi
r is coordinates of the 

ith centre of the rth stage; bi
r is production facilities the ith 

centre of the rth stage, r = I, II, t; ci
I (x, τi

I) is cost of the re-

source unit delivery from point x ϵ Ω to centre τi
I, UAH/t; 

cij
II (τi

I, τj
II) is cost of the resource unit delivery from centre τi

I 

to centre τj
II, UAH/t; ai is cost of the resource sorting out and 

shipping at enterprise τi
I calculated per resource unit, UAH/t; 

vij is amount of the resource delivered from centre τi
I to  

enterprise τj
II, t. 

It is required to find such partitioning of set Ω into N of 

disjoint subsets  1 2, ,..., N   =  (among which there 

can be empty ones) as well as to determine coordinates 

τ1
I, …, τN

I of those subsets and such transportation  

volumes v11, …, vNM, in terms of which functional: 

( ) ( ) ( )

( )( )

1

1 1
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N
I I I

i i
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would reach minimal value, and following conditions would 

be met: 
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,    (5) 

where N
 is class of all the possible cases of the partition-

ing of set Ω into N of disjoint subsets;  1 2, ,..., N   =  

is element of class ;N
  NMR+  is NM-dimensional space of 

non-negative real numbers. 

It should be remembered that problem (1)-(5) is called a 

continuous problem of optimal set partitioning with addition-

al connections. Further, we will consider it in terms of two 

variants – with the location of first-stage centres and with 

their fixed coordinates. 

1.2. Literature review 

Since the paper is the consistent continuation of the  

scientific studies represented in [1], we are not going to focus 

on scientific publications dealing with the problems of opti-

mization of supply volumes and development of the mecha-

nisms to reduce total costs for stocks preservation at mining 

enterprises. Consider only the papers involving up-to-date 

GIS-technologies to solve similar problems. 

Geoinformation systems have been widely used in dif-

ferent fields of practical activities owing to their advantages 

in unifying diversified data on the basis of geographical 

information. Nowadays, GIS is often applied in town-

planning activities, management of natural resources and 

many other fields helping users solve the problems of spatial 

analysis, planning, and forecasting [7]-[12]. 
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GIS stores the information about real worlds in the form 

of set of thematic layers united on the basis of geographical 

location. That simple but very flexible approach has proved 

its benefits during the solution of numerous important prob-

lems. As a rule, electronic maps contain full information 

concerning the length of roads, their connections, and their 

traffic conditions (speed rate, prohibited ramps, available 

transfer points etc.). 

Thus, basing on multispectral satellite data and accompa-

nying information on geology, geomorphology, topography, 

settlements, traffic intersections, forest cover, hydrology, and 

climate, paper [13] elaborates a platform to select the appro-

priate site to locate a thermal power station along the mining 

region in India. After its processing, digital satellite infor-

mation was used to study the lignite seam reserves and to 

analyse the use of land and plant cover. Other thematic in-

formation such as geology, geomorphology, coal basin 

boundaries and infrastructure, administrative units, canals 

and large settlements were digitized using GSI maps and SOI 

topographic data respectively. All the thematic vector layers 

were united and represented for their overlapping and priori-

tizing. Site selection for a thermal power station was based 

on four basic criteria (land, water, coal mine, and environ-

ment) and two secondary ones (cost and location access). 

Index of the site suitability was calculated involving the 

spatial analysis tool in ArcGIS 9.3. 

Paper [14] deals with the problems of optimal planning of 

allocated power biomass-based systems to satisfy electric 

power needs of rural areas in India. The proposed approach 

is based on the use of intellectual analysis of data and mod-

ern GIS along with the clusterization algorithmic k-method 

to divide the whole region into clusters and find the systems 

to generate biomass energy. Optimal value k is defined itera-

tively taking into consideration the demand and supply; it is 

selected appropriately to minimize total costs for system 

installation, costs for biomass transportation, and costs for its 

transfer and distribution. Clusterization results are represent-

ed on the regional GIS map. 

Paper [15] represents modification of classic p-meridian 

problem which takes into account spatial distribution of supply 

resources and competition for them on the part of potential 

objects. It proposes simplified study making it possible to 

determine optimally anaerobic reactors (AD) of the communi-

ty scale within the area of East-Midlands in Great Britain. 

Paper [16] represents new GIS enhancement called 

ArcMine developed to support melioration planning within 

the abandoned mining regions. ArcMine gives four tools to 

(a) evaluate hazards of mine subsidence; (b) to assess erosions 

of mine wastes, (c) to analyse ways of mine water flow to the 

surface, and (d) to determine the appropriate species of wood 

for mine reafforestation. Spatial database also includes topo-

graphic and geological maps as well as a map concerning 

mine demolition data and information about the well. Facts of 

ArcMine implementation and application to analyse aban-

doned mining regions in Korea tell about the benefits of ap-

plying ArcMine information concerning the land mine threats. 

Paper [17] considers modern techniques based on geoin-

formation technologies and their application to simulate and 

evaluate risks connected with mining activities, i.e. soil con-

tamination, soil erosion, water pollution, and deforestation. 

Other examples of GIS application in different spheres of 

human activity while solving the location-allocation prob-

lems are given in papers [18]-[20]. 

While solving continuous multistage location-allocation 

problems, up-to-date GIS-technologies may be used as follows:  

1) to evaluate mineral reserves at the territory; 

2) to consider terrain and other features of the area where 

new industrial objects may be located; 

3) to define the shortest way and calculate its length be-

tween the objects etc. 

In terms of the paper, we are going to use cross-platform 

open-code geoinformation system QGIS, which helps apply 

instrument of analysis, sampling, geoprocessing, geometry 

control, and database control. QGIS includes a functional to 

search for the shortest way required to solve practical tasks 

of optimal location-allocation. Information concerning min-

eral deposits at the territory of Ukraine, their reserves and 

extraction as well as the available Ukrainian mining enter-

prises can be found on the information resource “Mineral 

resources of Ukraine” [20] created to meet the users with 

current state of mineral and raw material base of Ukraine. 

2. Algorithm of the problem solution 

The required and sufficient conditions of optimality for 

continuous problem of optimal set partitioning with addition-

al connections of (1)-(5) type are obtained in [1] in the as-

sumption that function ρ(x) ≥ 0 for almost all x ϵ Ω, and 

balance conditions are met: 

( )
1

M
II
j

j

b x dx



=

=  .             (6) 

Optimal partitioning of set Ω is represented in the form of 

characteristic functions of subsets making it up: for 

i = 1,…, N and almost all x ϵ Ω: 
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where τI
*i, ψi

*, i = 1, …, N is solution of following problem: 

( ) max
NR
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I N
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1
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Components
* , 1, , 1,ij i N j M = =  are the constituents of 

the optimal solution of transport problem of such a type: 

( )( ) *

1 1

, min
N M

II I II
ij i j i ij

i j

c a  
= =

+ →  ;         (10) 

( ) ( )* * *

1

, , 1,
M

I I
ij i i i

j

b b x x dx i N


  
=

= = =  ;        (11) 

1

, 1,
N

II
ij j

i

b j M
=
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0, 1,..., ; 1,..., .ij i N j M  = =           (13) 
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Note that function G1 (τi
I, ψ), being in its essence the re-

fined dual functional of problem (1)-(5) does not depend on 

variable v (contrary to the dual problem shown in paper [6]). 

That has become possible owing to the fact that in terms of 

any admissible fixed first-stage centres τi
I, …, τI

N (including 

optimal ones), optimality criterion of pair  * *( ),   is rep-

resented by the availability of such real constants as ψi
*, 

i = 1, …, N and ηj
*, j = 1, …, M, in terms of which following 

ratios are correct (apart from conditions (7)): 

( )

( )

* * *

* * *

, , 0,

, , 0,

II I II
ij i j i i j ij

II I II
ij i j i i j ij

c a if

c a if

    

    

 + = + 


 +  + =


         (14) 

for all i = 1, …, N and j= 1, …, M. 

Owing to the mentioned differences, the represented al-

gorithm to solve problem (1)-(5) differs from the iteration 

algorithm proposed in [5]. It stipulates that at first, there is 

problem solution (8) to find optimal coordinates of the first-

stage centres and corresponding partitioning of set Ω; then it 

means taking the obtained data into consideration to calculate 

the production facilities of the first-stage centres and solve 

problem (10)-(13). However, like in the aforementioned 

iteration algorithm, r(α)-algorithm is the key component here 

with the constant coefficient of space expansion   and adap-

tive method to regulate step factor [5]. 

Limitations τI ϵ ΩN may be taken into account with the 

help of projection operator NP


, if set Ω is convex, closed, 

and has rather simple structure, which does not require solv-

ing auxiliary problem of conditional optimization to define 

the point projection on the set. If structure of set Ω is rather 

complex, then its shape should be described with the help of 

limitations-inequalities; to take them into consideration, it 

may be possible to use nonsmooth penalty functions. 

3. Initialization 

Put area Ω within rectangular parallelepiped Π, which 

sides are parallel to the Cartesian axes; assume that ρ (x) = 0, 

if x ϵ Π/Ω. Cover parallelepiped with the rectangular grid and 

specify the initial approximation of vector of variables 

G1 (τ, ψ) (further, it will be defined as (u = (τI, ψ): 

u(0) = (τI(0), ψ(0)). In the following, we will omit upper index I 

of the unknown coordinates of the first-stage centres to sim-

plify the formula. Specify parameters α, q1, q2, nk, ε of the 

modification of r(α)-algorithm. 

Assume that k = 0. 

3.1. Step 1 

Calculate the values of vector-function λ(k) (x) = (λ1
(k) (x), 

λ2
(k) (x), …, λN

(k) (x)) at the nodes of grid x ϵ Π using formulas: 

( ) ( )

( )( ) ( ) ( )( )
( )

1, , ,

, , 1,..., ,

0 , 1,..., .

k k kI I
i k mi i

k k
mi

if c x c x

x m i m N

in the other cases, i N

  

 


+  +





= +  =
 =



.        (15) 

Calculate the values of function G1 (τ, ψ) and vector-

pseudogradient of that function: 

( ) ( ) ( ) ( )( )
( ) ( )( ( )

( ) ( ) ( ))

1 2

1 2

, , , ,

, , , ,..., , ,

, , , ,..., , ,

N

N

g u g g g

g g g

g g g

 

 

 

     

     

     

= = − =

−

− − −

 

at the grid nodes, if τ = τ(k), ψ = ψ(k), λ(x) = λ(k). 

Select the initial exploratory step h0 > 0, assume that 

B0 = I3N is square matrix of 3N × 3N dimension and define 

u(1) = u(0) – h0g (u(0)). 

If τ(1) ΠN, then τ(1): = PΠ
N(τ(1)), where PΠ

N(·) is projection 

operator on Cartesian product ΠN. 

3.2. Step 

Assume that as the calculation result after k, k = 1, 2, … 

algorithm steps, values τ(k) ψ(k) are obtained, in terms of the 

grid nodes, matrix Bk. 

Describe the (k + 1)th step. 

1. Calculate values λ(k) (x) at the grid nodes according to 

formula (15) if τ = τ(k), ψ = ψ(k). 

2. Calculate values of the component of vector-

pseudogradient g(u(k)). 

3. Perform recurrent iteration of r(α)-algorithm, which 

computational formula is as follows: 

( ) ( )
( )( )
( )( )

1
1

1

1

k
k

k k
k k

k
k

B g u

u u h B

B g u





+
+

+

+

= − . 

In this context, Bk + 1 is mapping operator of the trans-

formed space into the basic one with coefficient of expansion 

α, which is recalculated according to formula: 

( )1
1

1k k k kB B I


 


+
  

= + −  
  

, 

where: 

I – unit matrix of the corresponding dimension, k  is 

normalized vector of the difference of two sequential 

pseudogradients within the transformed space, i.e.: 

( )( ) ( )( )( )
( )( ) ( )( )( )

1
1

1
1

k k
k

k
k k

k

B g u g u

B g u g u






−
+

−
+

−

=

−

, 

under condition that 
( )( ) ( )( )( )1

1 0
k k

kB g u g u 
−

+ −   and 

θk = 0 in other cases, in this context ε0 is accuracy of the 

machine zero representation in a computing device. Length 

of step factor hk is regulated adaptively involving parameters 

q1, q2, nk. 

If 
( )1k N 
+

 , then 
( ) ( )( )1 1

: N
k k


  

+ +
= . 

4. If condition: 

( ) ( )1
, 0

k k
u u  

−
−   ,           (16) 

is not met, then move on to (k + 2)th step of the algorithm; in 

other case, move on to point 5. 
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5. Assume that τ* = τ(s), ψ* = ψ(s), λ*(x) = λ(s), where s is 

number of the iteration at which condition (16) is met. 

6. Calculate values ( ) ( )*I
i ib x x dx



 =  , 1,i N=  with 

the help of any cubature formula. 

7. Determine values
* , 1, , 1,ij i N j M = =  while solving the 

problem of linear programming of transport type (10)-(13). 

8. Calculate the value of target functional, if τ*, λ*, v*. 

End of the algorithm. 

Algorithm is described. 

3.3. Note 1 

In terms of the represented algorithm, constraint satis-

faction τI ϵ ΩN is implemented with the help of projection 

operator. Thus, algorithm 2 may be applied to solve 

OSPAC continuous problem only if set Ω is convex, closed, 

and has rather simple structure. Practical tasks may assume 

location of the first-stage centres within the specified area 

being often nonconvex and sometimes unconnected and 

having restricted areas (e.g. if there are some water bodies, 

industrial zones, rivers etc. at the territory). Then, there 

arises the necessity to solve the problem how not to allow 

locating the centre within the restricted area. Following 

approach is proposed to take into consideration the situa-

tion of not going beyond the limits of the admissible (parti-

tioned) area of the located centres: to check the centre  

coordinates at each iteration step in terms of their belonging 

to the admissible area; if some centre appears to be within 

the restricted area, to find its “pseudoprojection” on the set 

under partitioning. In this context, any point w ϵ Ω being at 

the shortest distance from point z will be considered as the 

presudoprojection of point z ϵ E2 on closed set Ω ⸦ E2. 

3.4. Note 2 

Computational efficiency of the algorithm depends upon 

the coefficient of space expansion α and parameters of adap-

tive step adjustment q1, q2, nk from r(α)-algorithm. In terms 

of nonsmooth functions, it is expedient to select those pa-

rameters as follows: α = 2 ÷ 3, h0 = 1, q1 = 1, q2 = 1.1 ÷ 1.2, 

nk = 2 ÷ 3 [5]. Parameter q1 is coefficient of step reduction, if 

condition of relaxation of the iteration process along the 

current descent direction is met per one step; q2 is coefficient 

of step increase; in this context, natural number nk (nk > 1) 

specifies the number of one-dimensional descent steps after 

which the step will be increased by q2 times. 

3.5. Note 3 

The algorithm is easy to be modified in case of fixed  

coordinates of the first-stage centres. In this case, to find 

components of characteristic functions of subsets making up 

optimal partitioning of set Ω, problem of unconditional  

maximization of nonsmooth function is solved instead of 

problem (8)-(9): 

( )2 max ,
NR

G





→            (17) 
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( )( )

2
1,

1,1
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I I
k k k
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M
II I II

j i ij i j i
i Nj

G c x x dx

b c a
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==

= + +

+ − −

        (18) 

4. Examples of implementation 

of the problem-solving algorithms 

We are going to demonstrate the operating results of the 

developed software to solve model two-stage OSPAC prob-

lems. Consider the bituminous coal deposits of Dniprope-

trovsk Region as the area within which the resources are 

pooled; data concerning the deposit are represented by inter-

active map [21] (Fig. 1). Locations of the second-stage en-

terprises will be defined arbitrarily within the region territory 

without their connection to any specific objects. 
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Figure 1. Map of mineral deposits within the territory of 

Dnipropetrovsk region 

Preparatory stage of the electronic map processing in-

volves elimination of some places, which do not belong to the 

regional territory, from the map with the help of graphic edi-

tor. Introduce the conditional (relative) rectangular coordinate 

systems, having taken some arbitrary point as the beginning, 

so that the area under consideration would be completely in-

side rectangle Π = {(x1, x2): 0 ≤ x1 ≤ 12; 0≤ x2 ≤ 12}. The terri-

tory corresponding to the deposit on the map is the set under 

partitioning Ω. In terms of numerical implementation of the 

algorithms, discretization of the specified area is performed. 

To calculate multiple integrals, the developed software applies 

cubature trapezoid formula; problem (10)-(13) is solved by 

means of the potential method. All the calculations were car-

ried out in terms of following values of errors and parameters 

of r()-algorithm: ε1, 2 = 0.0001; α = 3, β = 0.9, ε = 0.0001. All 

the problems represented below mean that total needs in the 

resources for the second-stage enterprises are 1 conditional 

unit. Consequently, according to condition (6), total amount of 

the resource pooled in terms of Ω by all the first-stage enter-

prises is also equal to 1 conditional unit. To calculate functions 

ci
I (x, τi) and cij

II (τi, τj), Minkowskian metric c(x, y) = ((x1 –

 y1)p + (x2 – y2)p)1/p is applied in terms of specific parameter 

setting p. Function ρ(x) = 1 is for all the points of area Ω. 

4.1. Problem 1. Continuous OSPAC 

problem with fixed centres 

Initial data: N = 4, M = 7; τ1
I = (6.094; 3.52), τ2

I = (9.35; 

3.828), τ3
I = (9.702; 5.082), τ4

I = (7.832; 4.356); 
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τ1
II = (10.098; 4.202), τ2

II = (8.91; 6.446), τ3
II = (7.788; 

2.574), τ4
II = (4.466; 2.398), τ5

II = (2.2; 4.422), τ6
II = (2.464; 

6.644), τ7
II = (6.292; 5.39), bII = (0.174; 0.06; 0.127; 0.154; 

0.158; 0.192; 0.131). Figure 2 shows optimal partitioning of 

set Ω and indicates connections of the first- and second-stage 

enterprises in two variants: 

1) parameters of Minkowskian metric p = 1 and for func-

tions ci
I (x, τi); 

2) for functions cij
II (τi, τj), ai = 0, i = 1,4 ; 

3) p = 10 for functions ci
I (x, τi), p = 1 for functions  

cij
II (τi, τj), a = (0.5; 0.62; 0.36; 0.45). 

In this context, amount of the resources pooled by the 

corresponding first-stage enterprises is as follows (with the 

accuracy of 0.001): 

а) bI = (0.307; 0.219; 0.178; 0.295); 

b) bI = (0.29; 0.194; 0.201; 0.313). 

 

(a) (b) 

4

5

6

3

7

2

1

 

4

5

6

3

7

2

1

 

Figure 2. Optimal set partitioning and resource transportation 

scheme between the first- and second-stage enterprises 

According to the figure, the available connections  

between the first- and second-stage enterprises are identical; 

there is slight difference only in the amount of the transport-

ed resources shown in Table 1. 

Table 1. Amount of the resource transported between the enter-

prises of two stages in problem 1 

Number of the 

first-stage 

centre i 

Number of the 

second-stage 

centre j 

Amount of the transported 

resource vij in the problem 

a b 

2 1 0.1748 0.1748 

3 2 0.0606 0.0606 

2 3 0.044 0.0199 

4 3 0.083 0.1075 

1 4 0.155 0.1548 

1 5 0.152 0.1352 

4 5 0.0062 0.0233 

3 6 0.1177 0.1407 

4 6 0.0746 0.0517 

4 7 0.1314 0.1314 

 

4.2. Problem 2. Continuous OSPAC 

problem with the location of the first-stage centres 

The problem was solved in terms of different initial data.  

Problem 2.1. Initial conditions: N = 4, M = 7; τ1
I = (8.8; 6.4), 

τ2
II = (10.1; 4.36), τ3

II = (5.5; 1.8), τ4
II = (4.5; 2.8), τ5

II = (2.6; 

3.6), τ6
II = (2.3; 5.6), τ7

II = (4.95;5.37); bII = (0.14; 0.173; 0.134; 

0.16; 0.133; 0.076; 0.181); ai = 0, i = 1,4 , pI, II = 2. 

Figure 3a demonstrates the initial location of the first-stage 

centres. It also shows its corresponding set partitioning and 

scheme of additional connections as the solution for OSPAC 

problem with the fixed centres. It should be noted that the value 

of target functional (1) of the problem with such data is equal to 

4.4322 conv. un. While solving OSPAC problem with the cen-

tres location, following components of optimal solution were 

obtained: τ1
I = (7.93; 3.92), τ2

I = (7.01; 3.45), τ3
I = (9.13; 4.78), 

τ4
I = (9.07; 4.0), v11 = 0.14, v12 = 0.08, v22 = 0.09, v23 = 0.134, 

v24 = 0.127, v34 = 0.033, v35 = 0.136, v36 = 0.072, v46 = 0.004, 

v47 = 0.182. Optimal partitioning and additional connections are 

shown in Figure 3b. Optimal functional value is 3.5011 conv. 

un. being much lower comparing to the abovementioned value. 
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Figure 3. Optimal set partitioning and resource transportation 

scheme between the first- and second-stage enterprises 

in problem 2.1 

Problem 2.2. Initial conditions: N = 6, M = 3; τ1
II = (4.246; 

2.53), τ2
II = (1.54; 6.424), τ3

II = (8.7; 6.16), bII = (0.337; 0.161; 0.502); 

aI = (0.12, 0.15, 0.18, 0.10, 0.13, 0.17), ai
II = 0, i = 1,3 , pI, II = 1. 

Figure 4a shows the initial location of the first-stage cen-

tres as well as the corresponding set partitioning and scheme 

of additional connections obtained as the solution of OSPAC 

problem with the fixed centres. Value of target functional (1) 

of the problem in terms of such data is equal to 7.13 conv. 

un. While solving OSPAC problem with the centres location, 

following components of optimal solutions were obtained: 

τ1
I = (6.7; 3.6), τ2

I = (7.39; 3.3), τ3
I = (7.7; 3.9), τ4

I = (8.35; 

4.13), τ5
I = (9.2; 3.96), τ6

I = (9.57; 4.75), v11 = 0.214, 

v21 = 0.122, v12 = 0.021, v32 = 0.13, v42 = 0.01, v43 = 0.171, 

v53 = 0.143, v63 = 0.188. In this context, with the accuracy of 

0.001, amount of the resource pooled by the corresponding 

first-stage enterprises is bI = (0.236; 0.122; 0.129; 0.181; 

0.142; 0.188). Optimal partitioning and additional connections 

are shown in Figure 4b. Functional value is 7.06 conv. un. 
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Figure 4. Optimal set partitioning and resource transportation 

scheme between the first- and second-stage enterprises 

in problem 2.2 

Table 2 represents only optimal partitioning in terms of 

fixed first-stage centres (in their initial approximation) for 

short demonstration of the results of other problems solution; 

it also shows optimal location of the first-stage centres with 

the representation of their specified zones and additional 

connections with the second-stage enterprises. Note that in 

terms of all the experiments dealing with optimal centres 

location, 10-30% reduction of target functional is observed 

comparing to its value in the initial approximation. 
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Table 2. Solution results of the OSPAC continuous problems with 

the first-stage centres location 

No 

Optimal partitioning of set Ω and transportation scheme 

Initial location 

of the first-stage centres 

Optimal location 

of the first-stage centres 

1 

3

2

1

4

5

6

7

8 9

 

8 9

7

6 1

5

4

3

2

 

2 

32

1

 

32

1

 

3 

1

4

5
6

7

8
9

10

1112

3
2

 

1

4
5

6

7

8
9

10

1112

3
2

 

 

To compare, the first line of the table contains the results 

of partitioning involving Manhattan metric; the second line 

uses Minkowskian metric, p = 10; and the third line involves 

Euclidean metric. 

Figure 5 illustrates the area partitioning into six zones 

taking into consideration the fact that two of the second-stage 

enterprises are within the territory under partitioning.  

Figure 5a corresponds to the fixed coordinates of the first-

stage centres. Figure 5b shows the case of their optimal loca-

tion. It is clear that both variants demonstrate the partitioning 

when the second-stage centres turn to be at the boundary 

between some zones, and first-stage centres are the vertexes 

of a polygon with the gravitational centres at points τj
II. 

 

(a) (b) 

  

Figure 5. Optimal set partitioning and resource transportation 

scheme. Second-stage enterprises are within the territo-

ry under partitioning 

It should be noted that while solving concrete practical 

two-stage OSPAC problems with the fixed centres to find the 

shortest way between any two first- and second-stage centres 

taking into account traffic diagram, we can use Google Maps 

Distance Matrix API library. To reduce the amount of library 

calls and, consequently, the amount of the involved compu-

ting resources such as the amount of random access memory 

and the time required to run either one query or all the que-

ries in general, it is possible to solve OSPAC problems with 

centres location in two stages. Stage one deals with the prob-

lem solution with distance functions equal to one of the 

known metrics – Manhattan, Euclidian, Minkowskian, Che-

byshev. The metric is selected by preliminary comparison of 

the results of the specific area partitioning basing upon the 

distance between the points calculated both theoretically and 

with the help of GIS. Stage two added GIS to search actual 

distance between the determined centres and regional points; 

this stage deals with the definition of optimal partitioning of 

the specified region and costs for the resource transportation 

between the first- and second-stage enterprises. 

5. Conclusion 

The paper has considered the issues of optimal arrangement 

of two-stage processes of material flow allocation in transporta-

tion and logistic chain, which structural elements are represent-

ed by the mines extracting coal within the certain territory and 

enterprises consuming or processing that resource. 

Solution of two-stage problems of raw material flow alloca-

tion helps demonstrate that it is possible to reduce the total costs 

due to the management of material and their accompanying 

service flows throughout the whole logistic chain beginning 

from the moment of flow origin up to its arrival to the end user. 

The developed software implementing the algorithms of 

OSPAC problems solution involving up-to-date geoinfor-

mation resources may be applied for quantitative substantia-

tion and decision-making as for the location of new enter-

prises connected with mineral extraction taking into account 

its further transportation to the end users. 

The proposed mathematical and algorithmic apparatus to 

solve OSPAC continuous problems relative to the fuel and 

energy complex enterprises makes it possible to partition the 

deposit area into the zones, which are allocated to the first-

stage enterprises exclusively. However, according to the 

interactive map of fossil fuel minerals [21], territories of 

some operating mines developing one and the same deposit, 

may be overlapped (due to coal mining in terms of different 

mines). It is possible to consider such a situation while de-

scribing two-stage optimization problems of location-

allocation with the help of the models of continuous prob-

lems of optimal multiplex set partitioning [22] being the 

subject for further studies. Moreover, application of other 

methods to solve problems of nonsmooth functions minimiza-

tion (e.g. quasi-Newtonian) is of certain interest as well 

[23], [24]. Taking into consideration the fact that in real prob-

lems of optimal material flow allocation it is quite difficult to 

describe analytically the distance between two arbitrary re-

gional points, it would be useful to study the possibility of 

applying DFO methods (derivative-free optimization) [25] or 

uncertain algorithms (represented in [26]) to solve the prob-

lems obtained as a result of the OSPAC problems reduction. 
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Вирішення задач оптимізації двоетапного розподілу матеріальних потоків 

А. Булат, С. Дзюба, С. Мінєєв, Л. Коряшкіна, С. Ус 

Мета. Розробка нового, ефективного з обчислювальної точки зору, алгоритму вирішення двоетапної задачі розподілу ресурсу, 

що безперервно займає задану область, а також демонстрація роботи відповідного програмного забезпечення, створеного із засто-

суванням сучасних геоінформаційних ресурсів. 

Методика. У роботі використано математичні моделі безперервних задач оптимального розбиття множин з додатковими 

зв’язками для опису двоетапних задач розміщення-розподілу матеріальних ресурсів. Методичний підхід вирішення таких задач 

заснований на ідеї зведення їх до задач нескінченномірного математичного програмування, для яких, в свою чергу, за допомогою 

застосування апарату теорії подвійності оптимальне рішення вдається отримати в аналітичному вигляді. 

Результати. Розроблено математичний і алгоритмічний апарати вирішення безперервних задач у застосуванні до підприємств 

паливно-енергетичного комплексу, що дозволяє отримувати розбиття району родовища на зони, за якими підприємства першого 

етапу закріплюються монопольно. Робота алгоритму показана на прикладі вирішення модельної задачі. Визначено, що виграшем 

описаного підходу є зведення задачі нескінченномірного програмування до задачі кінцево-мірної негладкою оптимізації, оскільки 

отримані розрахункові формули містять параметри, для визначення яких потрібно вирішити допоміжну задачу оптимізації недифе-

ренційованої функції. 

Наукова новизна. Представлений алгоритм, на відміну від раніше розробленого, не передбачає вирішення задачі лінійного 

програмування транспортного типу на кожному кроці ітераційного процесу. Така задача вирішується лише один раз для відшу-

кання обсягів перевезень продукції між підприємствами першого і другого етапів після того, як знайдені інші компоненти опти-

мального рішення. 

Практична значимість. Програмна реалізація алгоритму на основі сучасних геоінформаційних технологій і ресурсів на прик-

ладі сировинних потоків дозволяє зменшити сукупність витрат, пов’язаних з управлінням матеріальними і супутніми їм сервісними 

потоками по всьому логістичному ланцюгу, від моменту зародження потоку до надходження його кінцевому споживачеві. 

Ключові слова: багатоетапні задачі, розбиття множини, геоінформаційні технології, розміщення-розподіл, негладка оптимізація 
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Решении задач оптимизации двухэтапного распределения материальных потоков 

А. Булат, С. Дзюба, С. Минеев, Л. Коряшкина, С. Ус 

Цель. Разработка нового, эффективного с вычислительной точки зрения, алгоритма решения двухэтапной задачи распределе-

ния ресурса, непрерывно занимаемого заданную область, а также демонстрация работы соответствующего программного обеспе-

чения, созданного с применением современных геоинформационных ресурсов. 

Методика. В работе использованы математические модели непрерывных задач оптимального разбиения множеств с дополнитель-

ными связями для описания двухэтапных задач размещения-распределения материальных ресурсов. Методический подход решения 

таких задач основан на идее сведения их к задачам бесконечномерного математического программирования, для которых, в свою 

очередь, с помощью применения аппарата теории двойственности оптимальное решение удается получить в аналитическом виде. 

Результаты. Разработан математический и алгоритмический аппарат решения непрерывных задач в применении к предприяти-

ям топливно-энергетического комплекса, который позволяет получать разбиение района месторождения на зоны, за которыми 

предприятия первого этапа закрепляются монопольно. Работа алгоритма показана на примере решения модельной задачи. Опреде-

лено, что выигрышем описанного подхода является сведение задачи бесконечномерного программирования к задаче конечномер-

ной негладкой оптимизации, поскольку полученные расчетные формулы содержат параметры, для определения которых нужно 

решить вспомогательную задачу оптимизации недифференцируемой функции. 

Научная новизна. Представленный алгоритм, в отличие от ранее разработанного, не предусматривает решения задачи линей-

ного программирования транспортного типа на каждом шаге итерационного процесса. Такая задача решается лишь один раз для 

отыскания объемов перевозок продукции между предприятиями первого и второго этапов после того, как найдены остальные ком-

поненты оптимального решения. 

Практическая значимость. Программная реализация алгоритма на основе современных геоинформационных технологий и 

ресурсов на примере решения задачи распределения сырьевых потоков позволяет уменьшить совокупность издержек, связанных с 

управлением материальными и сопутствующими им сервисными потоками по всей логистической цепи, от момента зарождения 

потока до поступления его конечному потребителю. 

Ключевые слова: многоэтапные задачи, разбиение множества, геоинформационные технологии, размещение-распределение, 

негладкая оптимизация 
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