Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Innovative approaches to stabilizing underground mine workings in unstable rock masses by creating a preliminary protective shield

Yerkin Iskakov1, Dikhan Amanzholov1, Zhandos Kenessov1

1Satbayev University, Almaty, Kazakhstan


Min. miner. depos. 2025, 19(2):65-74


https://doi.org/10.33271/mining19.02.065

Full text (PDF)


      ABSTRACT

      Purpose. The research is aimed at developing the technology for chemical strengthening of mine workings using epoxy reagent to create a protective shield in unstable zones of rock masses, as well as at assessing the strength of the strengthened areas and improving the stability of mine workings.

      Methods. During the research, core samples extracted from the epoxy reagent-strengthened mass were tested to assess their strength and resistance to external influences. Numerical modeling was performed in ANSYS Mechanical 14.5 to analyze the stress-strain state of strengthened and non-strengthened areas.

      Findings. Tests of core samples taken from the Akbakai mine showed that failure mainly occurs in the zones of contact between the rock and the adhesive composition, with the share of new fractures not exceeding 15%. The adhesion strength was 0.15 MPa, which is three times higher than that of non-strengthened rock. The results of modeling confirmed the reduction of stresses and displacements in strengthened zones by 2-3 times compared to non-strengthened ones, which indicates the high efficiency of the proposed method to improve the stability of mine workings.

      Originality. For the first time, an innovative method of chemical strengthening of mine workings with the use of protective epoxy shield, which significantly increases the stability of the mass when conducting mine workings under the influence of mineral salts and external loads, has been substantiated.

      Practical implications. The developed technology of chemical strengthening of mine workings with the use of protective epoxy shield has a high practical significance for the mining industry. Its application will significantly improve the stability of rock masses, especially in unstable zones exposed to the influence of mineral salts, which contributes to improving the safety and durability of mine workings, reducing the risks of caving and cleavage, as well as increasing the efficiency of mining-tunneling operations.

      Keywords: mine workings, mass stability, arch caving, chemical strengthening, adhesion strength, modeling


      REFERENCES

  1. Innovative approaches to stabilizing underground mine workings in unstable rock masses by creating a preliminary protective shieldhttps://doi.org/10.1016/j.gsme.2024.03.007
  2. Ladinig, T., Wimmer, M., & Wagner, H. (2022). Raise caving: A novel mining method for (deep) mass mining. Caving 2022: Proceedings of the Fifth International Conference on Block and Sublevel Caving, 651-666. https://doi.org/10.36487/ACG_repo/2205_45
  3. Abdoldina, F., Nazirova, A., Dubovenko, Y., & Umirova, G. (2020). On the solution of the gravity direct problem for a sphere with a simulated annealing approach. International Multidisciplinary Scientific GeoConference, 20(2.1), 239-245. https://doi.org/10.5593/sgem2020/2.1/s07.031
  4. Hu, Y., Lu, J., Zhu, J., Zhang, H., Ren, Y., Wu, J., & Zeng, X. (2025). Data-knowledge hybrid driven intelligent prediction method of tunnel excavation profiles geometric deformation. International Journal of Digital Earth, 18(1), 2459317. https://doi.org/10.1080/17538947.2025.2459317
  5. Sun, X., Shi, C., Peng, Z., Xiao, G., & Ge, Y. (2025). An innovative method and model for calculating the mountain tunnels with sprayed waterproofing membrane. Tunnelling and Underground Space Technology, 157, 106352. https://doi.org/10.1016/j.tust.2024.106352
  6. Razaque, A., Bektemyssova, G., Yoo, J., Hariri, S., Khan, M.J., Nalgozhina, N., Jaeryong, H., & Khan, M.A. (2025). Review of malicious code detection in data mining applications: Challenges, algorithms, and future direction. Cluster Computing, 28(3), 1-37. https://doi.org/10.1007/s10586-024-05017-x
  7. Kalpeyeva, Z., Kassymova, A., Umarov, T., Mustafina, A., & Mukazhanov, N. (2020). The structure and composition of the business process model. ACM International Conference Proceeding Series, 1-6. https://doi.org/10.1145/3410352.3410783
  8. Rysbekov, K.B., Bitimbayev, M.Z., Akhmetkanov, D.K., & Miletenko, N.A. (2022). Improvement and systematization of principles and process flows in mineral mining in the Republic of Kazakhstan. Eurasian Mining, 1, 41-45. https://doi.org/10.17580/em.2022.01.08
  9. Nurpeisova, M.B., Bitimbayev, M.Zh., Rysbekov, K.B., & Bekbasarov, Sh.Sh. (2021). Forecast changes in the geodynamic regime of geological environment during large-scale subsoil development. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 5-10. https://doi.org/10.33271/nvngu/2021-6/005
  10. Otchet po NIR No. 72013194. (1973). Opredelenie fiziko-mekhanicheskikh svoystv skalnykh gornykh porod mestorozhdeniya Akbakay. Ust-Kamenohorsk, Kazakhstan: VNIITSVETMET, 19 s.
  11. Otchet po NIR No. 6-77-075. (1977). Opredelenie fiziko-mekhanicheskikh svoystv skalnykh porod mestorozhdeniya “Karyernoe” Akbakayskogo rudnogo polya dlya proektirovaniya karyera. Ust-Kamenohorsk, Kazakhstan: VNIITSVETMET, 7 s.
  12. Otchet o NIR No. 0112RK02709. (2014). Razrabotka strukturnoy modeli i tekhniko-tekhnologicheskikh sposobov podderzhaniya geosistemy “massiv – tekhnologiya – podzemnoe sooruzhenie” pri podzemnoy razrabotke zolotorudnykh mestorozhdeniy (Akbakay, Bakyrchik, Maykain) i kompleksnoy mekhanizatsii vedeniya gornykh rabot pri osvoenii grupp mestorozhdeniy zolota (Akbakay). Almaty, Kazakhstan, 158 s.
  13. AO “AK Altynalmas”. (2012). Proekt “Vskrytie i otrabotka zapasov mestorozhdeniya Akbakay”, 1(2), 224 s.
  14. Serdaliev, E.T., & Amanzholov, D.B. (2015). Issledovanie prirody rassloeniya vmeshchayushchikh gornykh porod mestorozhdeniya “Akbakay”. Regionalnyy Vestnik Vostoka, 37-43.
  15. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability assessment of hanging wall rocks during underground mining of iron ores. Minerals, 11(8), 858. https://doi.org/10.3390/min11080858
  16. Pysmenniy, S., Shvager, N., Shepel, O. Kovbyk, K., & Dolgikh O. (2020). Development of resource-saving technology when mining ore bodies by blocks under rock pressure. E3S Web of Conferences, 166, 02006. https://doi.org/10.1051/e3sconf/202016602006
  17. Stupnik, N.I., Kalinichenko, V.A., Kolosov, V.A., Pismenniy, S.V., & Fedko, M.B. (2014). Testing complex-structural magnetite quartzite deposits chamber system design theme. Metallurgical and Mining Industry, 6(2), 88-93.
  18. Pysmennyi, S., Chukharev, S., Kourouma, I. K., Kalinichenko, V., & Matsui, A. (2023). Development of technologies for mining ores with instable hanging wall rocks. Inżynieria Mineralna, 1(1(51)), 103-112.https://doi.org/10.29227/IM-2023-01-13
  19. Petlovanyi, M.V., Zubko, S.A., Popovych, V.V., & Sai, K.S. (2020). Physicochemical mechanism of structure formation and strengthening in the backfill massif when filling underground cavities. Voprosy Khimii i Khimicheskoi Tekhnologii, 6, 142-150. https://doi.org/10.32434/0321-4095-2020-133-6-142-150
  20. Kuz’menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 45-48. https://doi.org/10.1201/b16354-10
  21. Akhmetkanov, D.K. (2023). New variants for wide orebodies high-capacity mining systems with controlled and continuous in-line stoping. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 3, 6-21. https://doi.org/10.32014/2023.2518-170X.295
  22. Rysbekov, K.B., Toktarov, A.A., & Kalybekov, T. (2021). Technique for justifying the amount of the redundant developed reserves considering the content of metal in the mining ore. IOP Conference Series: Earth and Environmental Science, 666(3), 032076. https://doi.org/10.1088/1755-1315/666/3/032076
  23. Lozynskyi, V., Yussupov, K., Rysbekov, K., Rustemov, S., & Bazaluk, O. (2024). Using sectional blasting to improve the efficiency of making cut cavities in underground mine workings. Frontiers in Earth Science, 12, 1366901. https://doi.org/10.3389/feart.2024.1366901
  24. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040.https://doi.org/10.1088/1755-1315/970/1/012040
  25. Utepov, E.B., Omirbai, R.S., Suleev, D.K., Burshukova, G.A., Berkinbaeva, A.S., Nurgaliev, A.K., & Ibraeva, G.M. (2015). Developing metallic damping materials. Metallurgist, 58(11-12), 1025-1031. https://doi.org/10.1007/s11015-015-0035-3
  26. Yelemessov, K., Nauryzbayeva, D., Bortebayev, S., Baskanbayeva, D., & Chubenko, V. (2021). Efficiency of application of fiber concrete as a material for manufacturing bodies of centrifugal pumps. E3S Web of Conferences, 280, 07007.https://doi.org/10.1051/e3sconf/202128007007
  27. Chubenko, V.A., Khinotskaya, A., Yarosh, T., Saithareiev, L., & Baskanbayeva, D. (2022). Investigation of energy-power parameters of thin sheets rolling to improve energy efficiency. IOP Conference Series: Earth and Environmental Science, 1049, 012051.https://doi.org/10.1088/1755-1315/1049/1/012051
  28. Yelemessov, K.K., Baskanbayeva, D.D., Sabirova, L.B., & Akhmetova, S.D. (2023). Justification of an acceptable modern energy-efficient method of obtaining sodium silicate for production in Kazakhstan. IOP Conference Series: Earth and Environmental Science, 1254(1), 012002. https://doi.org/10.1088/1755-1315/1254/1/012002
  29. Dreus, A.Yu., Sudakov, A.K., Kozhevnikov, A.A., Vakhalin, Yu.N. (2016). Study on thermal strength reduction of rock formation in the diamond core drilling process using pulse flushing mode. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 5-10.
  30. Bazaluk, O., Slabyi, O., Vekeryk, V., Velychkovych, A., Ropyak, L., & Lozynskyi, V. (2021). A technology of hydrocarbon fluid production intensification by productive stratum drainage zone reaming. Energies, 14(12), 3514. https://doi.org/10.3390/en14123514
  31. Liu, W., Zhang, X., Fan, J., Zuo, J., Zhang, Z., & Chen, J. (2020). Study on the mechanical properties of man-made salt rock samples with impurities. Journal of Natural Gas Science and Engineering, 84, 103683. https://doi.org/10.1016/j.jngse.2020.103683
  32. Vandeginste, V., Ji, Y., Buysschaert, F., & Anoyatis, G. (2023). Mineralogy, microstructures and geomechanics of rock salt for underground gas storage. Deep Underground Science and Engineering, 2(2), 129-147. https://doi.org/10.1002/dug2.12039
  33. Li, Z., He, M. Y., Li, B., Wen, X., Zhou, J., Cheng, Y., & Deng, L. (2024). Multi-isotopic composition (Li and B isotopes) and hydrochemistry characterization of the Lakko Co Li-rich salt lake in Tibet, China: Origin and hydrological processes. Journal of Hydrology, 630, 130714. https://doi.org/10.1016/j.jhydrol.2024.130714
  34. Serdaliyev, Y., Iskakov, Y., & Amanzholov, D. (2023). Selection of the optimal composition and analysis of the detonating characteristics of low-density mixed explosives applied to break thin ore bodies. Mining of Mineral Deposits, 17(4), 53-60. https://doi.org/10.33271/mining17.04.053
  35. Serdaliyev, Y., & Iskakov, Y. (2024). Research into mass stress and failure zone parameters during blasting of fractured high benches using blasthole charges. Mining of Mineral Deposits, 18(4), 98-108. https://doi.org/10.33271/mining18.04.098
  36. Kalybekov, T., Rysbekov, K., Nаuryzbayeva, D., Toktarov, A., & Zhakypbek, Y. (2020). Substantiation of averaging the content of mined ores with account of their readiness for mining. E3S Web of Conferences, 201, 01039. https://doi.org/10.1051/e3sconf/202020101039
  37. Kalybekov, T., Rysbekov, K., Sandibekov, M., Bi, Y.L., & Toktarov, A. (2020). Substantiation of the intensified dump reclamation in the process of field development. Mining of Mineral Deposits, 14(2), 59-65. https://doi.org/10.33271/mining14.02.059
  38. Sarybayev, M. (2020). Mathematical modeling a stochastic variation of rock properties at an excavation design. SGEM International Multidisciplinary Scientific GeoConference, 165-172. https://doi.org/10.5593/sgem2020/1.2/s03.021
  39. Nurpeisova, M.B., Umirbaeva, A.B., Fedorov, E.V., & Miletenko, N.A. (2021). Integrated monitoring-based assessment of deformation and radiation situation of territorial domains. Eurasian Mining, 35(1), 83-87. https://doi.org/10.17580/em.2021.01.17
  40. Kubekova, S.N., Kapralova, V.I., Ibraimova, G.T., Raimbekova, A.S., & Ydyrysheva, S.K. (2022). Mechanically activated silicon-phosphorus fertilisers based on the natural and anthropogenic raw materials of Kazakhstan. Journal of Physics and Chemistry of Solids, 162, 110518. https://doi.org/10.1016/j.jpcs.2021.110518
  41. Raimbekova, A.S., Kapralova, V.I., Popova, A.K., & Kubekova, S.N. (2022). The study of manganese phosphate materials based on enrichment wastes. Journal of Chemical Technology and Metallurgy, 57(1), 176-183.
  42. Begalinov, A.B., Serdaliev, E.T., Iskakov, E.E., & Amanzholov, D.B. (2013). Shock blasting of ore stockpiles by low-density explosive charges. Journal of Mining Science, 49(6), 926931. https://doi.org/10.1134/s1062739149060129
  43. Begalinov, A., Serdaliyev, Y., Abshayakov, E., Bakhramov, B., & Baigenzhenov, O. (2015). Extraction technology of fine vein gold ores. Metallurgical & Mining Industry, 7(4), 312-320.
  44. Erickson, H.B. (1968). Strengthening rock by injection of chemical grout. Journal of the Soil Mechanics and Foundations Division, 94(1), 159-173. https://doi.org/10.1061/jsfeaq.0001081
  45. Stryczek, S., Gonet, A., & Kremieniewski, M. (2022). Special cement slurries for strengthening Salt Rock mass. Energies, 15(16), 6087. https://doi.org/10.3390/en15166087
  46. Aitkazinova, S.K., Derbisov, K.N., Donenbayeva, N.S., Nurpeissova, M., & Levin, E. (2020). Preparing solutions based on industrial waste for fractured surface strengthening. News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 5(443), 13-20. https://doi.org/10.32014/2020.2518-170X.99
  47. Portnov, V., Kamarov, R., Mausymbaeva, A., & Yurov, V. (2014). Link of specific electric resistance with qualitative and strength characteristics of ores. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 65-70. https://doi.org/10.1201/b17547-13
  48. Akzharkyn, I., Yelemessov, K., Baskanbayeva, D., Martyushev, N.V., Skeeba, V.Y., Konyukhov, V.Y., & Oparina, T.A. (2024). Strengthening polymer concrete with carbon and basalt fibres. Applied Sciences, 14(17), 7567. https://doi.org/10.3390/app14177567
  49. Pysmennyi, S., Chukharev, S., Peremetchy, A., Fedorenko, S., & Matsui, A. (2023). Study of stress concentration on the contour of underground mine workings. Inżynieria Mineralna, 1(1(51)), 69-78. https://doi.org/10.29227/IM-2023-01-08
  50. Yang, Z., Zheng, Z., El Naggar, M.H., & Liu, C. (2025). Study on the fracture characteristics of overlying rock strata under different mining face widths. Scientific Reports, 15(1), 11298. https://doi.org/10.1038/s41598-025-91349-6
  51. Jing, Y., Xu, Y., Bai, J., Li, Y., & Li, J. (2025). Mechanism and control technology of lateral load-bearing behavior of a support system adjacent to empty roadways. Applied Sciences, 15(3), 1200. https://doi.org/10.3390/app15031200
  52. Kovalevs’ka, I., Symanovych, G., & Fomychov, V. (2013). Research of stress-strain state of cracked coal-containing massif near-the-working area using finite elements technique. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 159-163. https://doi.org/10.1201/b16354-27
  53. Kononenko, M., & Khomenko, O. (2010). Technology of support of workings near to extraction chambers. New Techniques and Technologies in Mining – Proceedings of the School of Underground Mining, 193-197. https://doi.org/10.1201/b11329-31
  54. Babets, D.V., Sdvyzhkova, O.O., Larionov, M.H., & Tereshchuk, R.M. (2017). Estimation of rock mass stability based on probability approach and rating systems. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 2, 58-64.
  55. Nurpeisova, M.B., Salkynov, A.T., Soltabayeva, S.T., & Miletenko, N.A. (2024). Patterns of development of geomechanical processes during hybrid open pit/underground mineral mining. Eurasian Mining, 41(1), 7-11. https://doi.org/10.17580/em.2024.01.02
  56. Лицензия Creative Commons