Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

The investigation of different decolorization mechanism of methylene blue in the system with and without photocatalyst made from Indonesia laterite ore

Anisya Lisdiana1, Herkuswyna Isnaniyah Wahab1, Eki Naidania Dida1, Monna Rozana2, Mutia Dewi Yuniati1, Solihin Solihin1

1Research Center for Geological Resource, National Research and Innovation Agency, KST Samaun Samadikun, Komplek BRIN Jl Sangkuriang, Bandung, Indonesia

2Research Center for Environmental and Clean Technology, National Research and Innovation Agency, KST Samaun Samadikun, Komplek BRIN Jl Sangkuriang, Bandung, Indonesia


Min. miner. depos. 2025, 19(2):20-26


https://doi.org/10.33271/mining19.02.020

Full text (PDF)


      ABSTRACT

      Purpose. This work aims to investigate the performance of photocatalyst made from laterite ore to decolorize organic waste of methylene blue.

      Methods. Laterite ore was processed through leaching in chloride solution, followed by filtration and neutralization using sodium hydroxide to obtain a precipitate that contains maghemite photocatalyst. The maghemite was characterized to ensure its capability as a photocatalyst. The decolorization experiment using methylene blue as a representation of organic waste was conducted in the absence and presence of a photocatalyst in a constant UV light to reveal the mechanism of methylene blue decolorization. Hydrogen peroxide and pH are controlled to optimize the photocatalytic efficiency.

      Findings. A photocatalyst made from laterite contributes to the significant increase in the decolorization degree of me-thylene blue through the release of hydroxyl radicals, a powerful substance for decomposing organic matter. The optimal decomposition of methylene blue is achieved by combining the increase of hydrogen peroxide and the reduction of the pH of the organic waste. The optimum pH for the decolorization of methylene blue through photocatalytic reaction is at pH = 3.

      Originality. For the first time, the mechanism of decolorization in the absence and presence of photocatalyst is revealed, resulting an optimum condition to achieved highest degree of methylene blue decolorization.

      Practical implications. The method for synthesizing photocatalysts can be applied to produce alternative products from laterite ore, especially low-grade laterite ore, a by-product of high-grade nickel ore mining. The optimum conditions revealed in this research can be applied to synthesize photocatalysts from laterite ore and to remediate organic wastes.

      Keywords: laterite, maghemite, photocatalyst, decolorization


      REFERENCES

  1. Çetintaş, S. (2021). An alternative application for reuse of leaching residues: Determination of adsorption behaviour for methylene blue and process optimization. Sustainable Chemistry and Pharmacy, 23, 100504. https://doi.org/10.1016/j.scp.2021.100504
  2. Ji, Z., Zhang, Y., Qi, X., Wang, Y., Xia, X., & Pei, Y. (2021). Low-cost and facile fabrication of recyclable and reusable waste-based geopolymer for visible-light photocatalysis degradation. Journal of Cleaner Production, 310, 127434. https://doi.org/10.1016/j.jclepro.2021.127434
  3. Soldán, M., Kobetičová, H., & Štefko, T. (2019). Sorption of methylene blue by alternative adsorbents. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 27(44), 73-79. https://doi.org/10.2478/rput-2019-0008
  4. Oladoye, P.O., Ajiboye, T.O., Omotola, E.O., & Oyewola, O.J. (2022). Methylene blue dye: Toxicity and potential elimination technology from wastewater. Results in Engineering, 16, 100678. https://doi.org/10.1016/j.rineng.2022.100678
  5. Sun, Y., & O’Connell, D.W. (2022). Application of visible light active photocatalysis for water contaminants: A review. Water Environment Research, 94(10). https://doi.org/10.1002/wer.10781
  6. Ahmad, N., Suryani Arsyad, F., Royani, I., & Lesbani, A. (2022). Adsorption of methylene blue on magnetite humic acid: Kinetic, isotherm, thermodynamic, and regeneration studies. Results in Chemistry, 4, 100629. https://doi.org/10.1016/j.rechem.2022.100629
  7. Li, X., Simon, U., Bekheet, M. F., & Gurlo, A. (2022). Mineral-supported photocatalysts: A review of materials, mechanisms and environmental applications. Energies, 15(15), 5607. https://doi.org/10.3390/en15155607
  8. Jiang, D., Otitoju, T.A., Ouyang, Y., Shoparwe, N.F., Wang, S., Zhang, A., & Li, S. (2021). A review on metal ions modified TiO2 for photocatalytic degradation of organic pollutants. Catalysts, 11(9), 1-82. https://doi.org/10.3390/catal11091039
  9. Rahmayeni, Azizah, N., Stiadi, Y., Putri, Y. E., & Zulhadjri. (2022). Magnetic particles nanorod of zno/cufe2o4 prepared by green synthesized approach: Structural, optical and magnetic properties, and photocatalytic activity. Materials Research, 25, e20210164. https://doi.org/10.1590/1980-5373-MR-2021-0164
  10. Butt, C.R.M., & Cluzel, D. (2013). Nickel laterite ore deposits: Weathered serpentinites. Elements, 9(2), 123-128.https://doi.org/10.2113/gselements.9.2.123
  11. Zhai, X.J., Wu, Q., Fu, Y., Ma, L.Z., Fan, C.L., & Li, N.J. (2010). Leaching of nickel laterite ore assisted by microwave technique. Transactions of Nonferrous Metals Society of China (English Edition), 20(1), s77-s81. https://doi.org/10.1016/S1003-6326(10)60016-7
  12. Ma, B., Yang, W., Yang, B., Wang, C., Chen, Y., & Zhang, Y. (2015). Pilot-scale plant study on the innovative nitric acid pressure leaching technology for laterite ores. Hydrometallurgy, 155, 88-94. https://doi.org/10.1016/j.hydromet.2015.04.016
  13. Fan, R., & Gerson, A.R. (2013). Mineralogical characterisation of Indo-nesian laterites prior to and post atmospheric leaching. Hydrometallurgy, 134-135, 102-109. https://doi.org/10.1016/j.hydromet.2013.02.004
  14. Zhu, D., Pan, L., Guo, Z., Pan, J., & Zhang, F. (2019). Utilization of limonitic nickel laterite to produce ferronickel concentrate by the selective reduction-magnetic separation process. Advanced Powder Technology, 30(2), 451-460. https://doi.org/10.1016/j.apt.2018.11.024
  15. Zhang, J., Gao, L., He, Z., Hou, X., Zhan, W., & Pang, Q. (2020). Separation and recovery of iron and nickel from low-grade laterite nickel ore by microwave carbothermic reduction roasting. Journal of Materials Research and Technology, 9(6), 12223-12235. https://doi.org/10.1016/j.jmrt.2020.08.036
  16. Stanković, S., Stopić, S., Sokić, M., Marković, B., & Friedrich, B. (2020). Review of the past, present, and future of the hydrometallurgical production of nickel and cobalt from lateritic ores. Metallurgical and Materials Engineering, 26(2), 199-208. https://doi.org/10.30544/513
  17. Dissanayake, D.M.S.N., Mantilaka, M.M.M.G.P.G., De Silva, R.T., De Silva, K.M.N., & Pitawala, H.M.T.G.A. (2021). Laterite and its potential as an alternative-bauxite. Cleaner Materials, 1, 100016. https://doi.org/10.1016/j.clema.2021.100016
  18. Gunathilake, B.M., Jayawardana, D., Pupulewatte, P.G.H., Dissanayake, S., & Manage, P.M. (2023). Removal of methylene blue from aqueous solution using raw laterite: An adsorption study. Journal of the National Science Foundation of Sri Lanka, 51(1), 53-67. https://doi.org/10.4038/jnsfsr.v51i1.10886
  19. Nguyen, T.H., Tran, H.N., Vu, H.A., Trinh, M.V., Nguyen, T.V., Loganathan, P., & Nguyen, T.H.H. (2020). Laterite as a low-cost adsorbent in a sustainable decentralized filtration system to remove arsenic from groundwater in Vietnam. Science of the Total Environment, 699, 134267.https://doi.org/10.1016/j.scitotenv.2019.134267
  20. Cornell, R.M., & Schwertmann, U. (2003). The iron oxides: Structure, properties, reactions, occurences and uses. Weinheim, Germany: Wiley-vch, 664 p.https://doi.org/10.1002/3527602097
  21. Jonsson, C.M., Persson, P., Sjöberg, S., & Loring, J.S. (2008). Adsorption of glyphosate on goethite (α-FeOOH): Surface complexation modeling combining spectroscopic and adsorption data. Environmental Science and Technology, 42(7), 2464-2469. https://doi.org/10.1021/es070966b
  22. Whitehead, C.F., Carbonaro, R.F., & Stone, A.T. (2015). Adsorption of benzoic acid and related carboxylic acids onto FeOOH (Goethite): The low ionic strength regime. Aquatic Geochemistry, 21(2-4), 99-121. https://doi.org/10.1007/s10498-014-9248-5
  23. Das, G.K., & Li, J. (2023). Iron removal as goethite from synthetic laterite leach solution. ACS Omega, 8, 11931-11940.https://doi.org/10.1021/acsomega.2c07595
  24. Cohen, B., Shipley, D.S., Tong, A.R., Casaroli, S.J.G., & Petrie, J.G. (2005). Precipitation of iron from concentrated chloride solutions: Literature observations, challenges, and preliminary experimental results. Minerals Engineering 18, 1344-1347. https://doi.org/10.1016/j.mineng.2005.07.013
  25. Masambi, S.M., Dorfling, C., & Bradshaw, S. (2016). Comparing iron phosphate and hematite precipitation processes for iron removal from chloride leach solutions. Minerals Engineering, 98, 14-21.https://doi.org/10.1016/j.mineng.2016.07.001
  26. Serna, C.J., & Morales, M.P. (2005). Maghemite (γ-Fe2O3). A versatile magnetic colloidal material. ChemInform, 36(5), 27-81. https://doi.org/10.1002/chin.200505230
  27. Baabu, P.R.S., Kumar, H.K., Gumpu, M.B., Babu, K.J., Kulandaisamy, A.J., & Rayappan, J.B.B. (2023). Iron oxide nanoparticles: A review on the province of its compounds, properties and biological applications. Materials, 16(1), 59. https://doi.org/10.3390/ma16010059
  28. Dobrosz-Gómez, I., Gómez-García, M., López Zamora, S.M., Gilpavas, E., Bojarska, J., Kozanecki, M., & Rynkowski, J.M. (2015). Transition metal loaded TiO2 for phenol photo-degradation. Comptes Rendus Chimie, 18(10), 1170-1182. https://doi.org/10.1016/j.crci.2015.03.006
  29. Mellini, M., Fuchs, Y., Viti, C., Lemaire, C., & Linarès, J. (2002). Insights into the antigorite structure from Mössbauer and FTIR spectroscopies. European Journal of Mineralogy, 14(1), 97-104. https://doi.org/10.1127/0935-1221/02/0014-0097
  30. Farrokhpay, S., Cathelineau, M., Blancher, S.B., Laugier, O., & Filippov, L. (2019). Characterization of Weda Bay nickel laterite ore from Indonesia. Journal of Geochemical Exploration, 196, 270-281. https://doi.org/10.1016/j.gexplo.2018.11.002
  31. Chaudhari, N.S., Warule, S.S., Muduli, S., Kale, B.B., Jouen, S., Lefez, B., & Ogale, S.B. (2011). Maghemite (hematite) core (shell) nanorods via thermolysis of a molecular solid of Fe-complex. Dalton Transactions, 40(31), 8003-8011. https://doi.org/10.1039/c1dt10319a
  32. Ansari, A., Ali, A., Asif, M., & Shamsuzzaman. (2018). Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New Journal of Chemistry, 42(1), 184-197. https://doi.org/10.1039/c7nj03742b
  33. Rahman, L., Bhattacharjee, S., Islam, S., Zahan, F., Biswas, B., & Sharmin, N. (2020). A study on the preparation and characterization of maghemite (γ-Fe2O3) particles from iron-containing waste materials. Journal of Asian Ceramic Societies, 8(4), 1083-1094. https://doi.org/10.1080/21870764.2020.1812838
  34. Rana, P., Sharma, S., Sharma, R., & Banerjee, K. (2019). Apple pectin supported superparamagnetic (γ-Fe2O3) maghemite nanoparticles with antimicrobial potency. Materials Science for Energy Technologies, 2(1), 15-21. https://doi.org/10.1016/j.mset.2018.09.001
  35. Theurer, J., Ajagbe, O., Osorio, J., Elgaddafi, R., Ahmed, R., Walters, K., & Abbott, B. (2020). Removal of residual oil from produced water using magnetic nanoparticles. SPE Journal, 25(5), 2482-2495. https://doi.org/10.2118/199466-PA
  36. Shatooti, S., & Mozaffari, M. (2020). The effect of Zn2+ substitution on magnetic properties of maghemite nanoparticles, prepared by one-pot coprecipitation method at room temperature. Journal of Materials Science: Materials in Electronics, 31(3), 1891-1903. https://doi.org/10.1007/s10854-019-02708-9
  37. Xiang, H., Ren, G., Yang, X., Xu, D., Zhang, Z., & Wang, X. (2020). A low-cost solvent-free method to synthesize α-Fe2O3 nanoparticles with applications to degrade methyl orange in photo-fenton system. Ecotoxicology and Environmental Safety, 200, 110744. https://doi.org/10.1016/j.ecoenv.2020.110744
  38. Miao, F., Gao, M., Yu, X., Xiao, P., Wang, M., Wang, Y., & Wang, X. (2020). TiO2 electrocatalysis via three-electron oxygen reduction for highly efficient generation of hydroxyl radicals. Electrochemistry Communications, 113, 106687. https://doi.org/10.1016/j.elecom.2020.106687
  39. Salem, M.A., Salem, I.A., & Gemeay, A.H. (1994). Kinetics and mechanism of H2O2 decomposition by Cu(II)-, Co(II)-, and Fe(III)-amine complexes on the surface of silica‐alumina (25% Al2O3). International Journal of Chemical Kinetics, 26(11), 1055-1061.https://doi.org/10.1002/kin.550261102
  40. Monfared, H.H., & Amouei, Z. (2004). Hydrogen peroxide oxidation of aromatic hydrocarbons by immobilized iron (III). Journal of Molecular Catalysis A: Chemical, 217(1-2), 161-164. https://doi.org/10.1016/j.molcata.2004.03.020
  41. Feng, L., Lu, S., Qi, L., Fang, M., & Song, Y. (2020). Kinetics of hydrogen peroxide decomposition catalyzed by Cu-buserite over a well-sealed and thermostated kinetics assembly. International Journal of Chemical Kinetics, 52(11), 777-784. https://doi.org/10.1002/kin.21399
  42. Zhang, J., Tian, B., Wang, L., Xing, M., & Lei, J. (2018). Photocatalysis: Fundamentals, materials and applications. Shanghai, China: East China University of Science and Technology, 409 p. https://doi.org/10.1007/978-981-13-2113-9
  43. Augustynski, J., Alexander, B.D., & Solarska, R. (2011). Metal oxide photoanodes for water splitting. Topics in Current Chemistry, 303, 1-38. https://doi.org/10.1007/128
  44. Reza, K.M., Kurny, A., & Gulshan, F. (2016). Photocatalytic degradation of methylene blue by magnetite + H2O2 + UV process. International Journal of Environmental Science and Development, 7(5), 325-329. https://doi.org/10.7763/ijesd.2016.v7.793
  45. Poorsajadi, F., Sayadi, M.H., Hajiani, M., & Rezaei, M.R. (2022). Synthesis of CuO/Bi2O3 nanocomposite for efficient and recycling photodegradation of methylene blue dye. International Journal of Environmental Analytical Chemistry, 102(18), 7165-7178. https://doi.org/10.1080/03067319.2020.1826464
  46. Buettner, G.R., Doherty, T.P., & Bannister, T.D. (1985). Hydrogen peroxide and hydroxyl radical formation by methylene blue in the presence of ascorbis acids. Radiation and Environmental Biophysics, 24(1), 80. https://doi.org/10.1007/BF01212657
  47. Лицензия Creative Commons