Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Modeling the hydraulic washing-out process of amber-bearing rocks during amber extraction

Yevhenii Malanchuk1, Viktor Moshynskyi1, Andriy Khrystyuk1, Zinovii Malanchuk1, Valerii Korniyenko1

1National University of Water and Environmental Engineering, Rivne, Ukraine


Min. miner. depos. 2025, 19(2):10-19


https://doi.org/10.33271/mining19.02.010

Full text (PDF)


      ABSTRACT

      Purpose. The study focuses on the hydromechanical extraction of amber from sandy amber-bearing deposits in the Volyn Polissia region to identify conditions for efficient washing-out and optimize the technological parameters of extraction.

      Methods. The research employs a modeling approach for hydraulic washing-out based on the conditions of the Klesiv deposit. A mathematical model was developed to simulate the motion of solid particles in a turbulent flow, considering the stochastic nature of flow velocity and particle size distribution. The model integrates a system of differential equations describing particle movement and a block diagram of a statistical algorithm for evaluating the probability of amber particle detachment. Laboratory experiments were conducted using samples collected from productive sand horizons of the deposit.

      Findings. It was established that the probability of amber particle detachment increases significantly with higher near-bed velocity dispersion and granulometric heterogeneity of the rocks. Numerical simulations demonstrated that fine particles (d ≤ 1.4 mm) detach without rolling, while larger ones predominantly roll along the surface. A quantitative relationship was obtained between detachment probability and environmental parameters, allowing for a predictive assessment of hydraulic washing-out efficiency.

      Originality. A novel mathematical model was proposed, which accounts for the interaction between turbulent stochastic factors and the physical properties of particles. A statistical approach was applied for the first time to determine the critical conditions for amber particle detachment from the rock matrix.

      Practical implications. The results can be used to improve existing and develop new hydromechanical technologies for amber extraction, particularly in challenging sandy-clayey formations with high heterogeneity. Determining the critical flow parameters that ensure the highest probability of amber particle detachment enables the optimization of hydraulic mining giant operation modes and the designing of efficient slurry transport systems.

      Keywords: amber, hydraulic washing-out, amber-bearing rocks, hydromechanical method, turbulent flow, slurry


      REFERENCES

  1. Bulat, A.F. (2017). Industrial technologies of amber extraction. Dnipro-Rivne, Ukraine: IGTM-NUVHP, 237 p.
  2. Krynytska, M.V., & Kornienko, V.I. (2018). Grounding of geological conditions and technological bases of Polish amber extraction. Geo-technical Mechanics, 135, 61-68.
  3. Melnychuk, V.G., & Krynytska, M.V. (2018). Amber Polissia. Rivne, Ukraine: NUVHP, 236 p.
  4. Chen, J., Zhang, M., Prasolov, V., & Bozhko, L. (2023). An analysis of the russian amber market: Industrial trends, governance and market competitiveness. International Journal of Sustainable Development & Planning, 18(11), 3373-3380. https://doi.org/10.18280/ijsdp.181103
  5. Smaliychuk, A., Ghazaryan, G., & Dubovyk, O. (2021). Land-use changes in Northern Ukraine: Patterns and dynamics of illegal amber mining during 1986-2016. Environmental Monitoring and Assessment, 193(8), 502. https://doi.org/10.1007/s10661-021-09317-2
  6. Zamula, I., & Shavurska, O. (2023). DPSIR model for assessing the state of the environment. Revista Română de Statistică-Supliment, 79, 78-97.
  7. Kovalevskii, S., Marchuk, Y., Maevskyi, K., Kovalevskyi, S., & Сhurilov, A. (2021). Environmental consequences of the adverse impact of unauthorized amber mining on forest areas of Zhytomyr region. Ukrainian Journal of Forest and Wood Science, 12(1), 57-67. https://doi.org/10.31548/forest2021.01.007
  8. Malanchuk, Z.R., Moshynskyi, V.S., Lozynskyi, V.H., Korniienko, V.Ya., & Soroka, V.S. (2024). Determination of technological parameters for hydromechanical amber extraction in the Polissia region of Ukraine. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 3, 27-34. https://doi.org/10.33271/nvngu/2024-3/027
  9. Lysytsya, A.V., & Krupko, H.D. (2024). Some agrochemical characteristics of the soils of the Volyn’ Polissya ecosystems. Ukrainian Journal of Natural Sciences, 7, 121-126. https://doi.org/10.32782/naturaljournal.7.2024.13
  10. Martyniuk, V.O., Kovalchuk, I.P., Zubkovych, I.V., Pavlovska, T.С., & Sukhodolska, I.L. (2024). The geoecological analysis of Lake Tuchne (Volyn Polissia) and assessment of sapropel reserves in it. Journal of Geology, Geography and Geoecology, 33(1), 118-131. https://doi.org/10.15421/112413
  11. Malanchuk, Ye., Korniienko, V., Malanchuk, L., & Zaiets, V. (2020). Research into the moisture influence on the physical-chemical tuff-stone characteristics in basalt quarries of the Rivne-Volyn region. E3S Web of Conferences, 211, 01036.https://doi.org/10.1051/e3sconf/202020101036
  12. Khrystyuk, A.O. (2015). Analysis of existing methods and technological means of hydromonitoring erosion. Bulletin of the Engineering Academy of Sciences, 1, 236-240.
  13. Malanchuk, Z., Korniyenko, V., Malanchuk, Y., & Khrystyuk, A. (2016). Results of experimental studies of amber extraction by hydromechanical method in Ukraine. Eastern-European Journal of Enterprise Technologies, 3(10(81)), 24-28. https://doi.org/10.15587/1729-4061.2016.72404
  14. Komliev, O., Remezova, O., Naumenko, U., & Krynitska, M. (2024). Morphogenetic types of amber traps in the Pripyat amber basin. IOP Conference Series: Earth and Environmental Science, 1348(1), 012082. https://doi.org/10.1088/1755-1315/1348/1/012082
  15. Matsui, V., Naumenko, U., Remezova, E., Naumenko, O., & Komlev, O. (2022). Evaluation of geological criteria and prospects of amber prospecting in Ukraine. 16th International Conference Monitoring of Geological Processes and Ecological Condition of the Environment, 1, 1-5. https://doi.org/10.3997/2214-4609.2022580151
  16. Trach, Y., Melnychuk, V., Melnychuk, G., Mazur, Ł., Podlasek, A., Vaverková, M.D., & Koda, E. (2021). Using local mineral materials for the rehabilitation of the Ustya River – A case study. Desalination and Water Treatment, 232, 346-356. https://doi.org/10.5004/dwt.2021.27559
  17. Moshynskyi, V., Zhomyruk, R., Vasylchuk, O., Semeniuk, V., Okseniuk, R., Rysbekov, K., & Yelemessov, K. (2021). Investigation of technogenic deposits of phosphogypsum dumps. E3S Web of Conferences, 280, 08008.https://doi.org/10.1051/e3sconf/202128008008
  18. Moshynskyi, V., Malanchuk, Z., Tsymbaliuk, V., Malanchuk, L., Zhomyruk, R., & Vasylchuk, O. (2020). Research into the process of storage and recycling technogenic phosphogypsum placers. Mining of Mineral Deposits, 14(2), 95-102.https://doi.org/10.33271/mining14.02.095
  19. Peremetchyk, A., Pysmennyi, S., Chukharev, S., Korniyenko, V., & Fedorenko, S. (2024). Monitoring and estimation of mining and geometric indicators of the deposit. IOP Conference Series: Earth and Environmental Science, 1348(1), 012031. https://doi.org/10.1088/1755-1315/1348/1/012031
  20. Rysbekov, K.B., Toktarov, A.A., & Kalybekov, T. (2021). Technique for justifying the amount of the redundant developed reserves considering the content of metal in the mining ore. IOP Conference Series: Earth and Environmental Science, 666(3), 032076. https://doi.org/10.1088/1755-1315/666/3/032076
  21. Sobczyk, E.J., Galica, D., Kopacz, M., & Sobczyk, W. (2022). Selecting the optimal exploitation option using a digital deposit model and the AHP. Resources Policy, 78, 102952, 1-15. https://doi.org/10.1016/j.resourpol.2022.102952
  22. Kubekova, S.N., Kapralova, V.I., Ibraimova, G.T., & Batyrbayeva, A.A. (2016). Enrichment wastes’ processing of manganiferous ores with the use of mechanochemical methods. International Journal of Environmental and Science Education, 11(11), 4855-4869.
  23. Kubekova, S.N., Kapralova, V.I., Ibraimova, G.T., Raimbekova, A.S., & Ydyrysheva, S.K. (2022). Mechanically activated silicon-phosphorus fertilisers based on the natural and anthropogenic raw materials of Kazakhstan. Journal of Physics and Chemistry of Solids, 162, 110518. https://doi.org/10.1016/j.jpcs.2021.110518
  24. Kubekova, S.N., Kapralova, V.I., & Telkov, S.A. (2016). Silicophosphate sorbents, based on ore-processing plants’ waste in Kazakhstan. International Journal of Environmental and Science Education, 11(12), 4985-4996. https://doi.org/10.32014/2019.2518-170X.93
  25. Raimbekova, A.S., Kapralova, V.I., Popova, A.K., & Kubekova, S.N. (2022). The study of manganese phosphate materials based on enrichment wastes. Journal of Chemical Technology and Metallurgy, 57(1), 176-183.
  26. Zaborowski, S., Kałuża, T., Jusik, S., Dysarz, T., & Hämmerling, M. (2024). Environmental Restoration and changes of sediment and hydrodynamic parameters in a section of a renaturalised lowland watercourse. Sustainability, 16(10), 3948. https://doi.org/10.3390/su16103948
  27. Uskenbayeva, R., Moldagulova, A., & Mukazhanov, N.K. (2020). Creation of data classification system for local administration. Optimization of Complex Systems: Theory, Models, Algorithms and Applications, 761-768. https://doi.org/10.1007/978-3-030-21803-4_76
  28. Uskenbayeva, R.K., Kuandykov, A.A., Mukazhanov, N.K., Kalpeyeva, Z.B., & Rakhmetulayeva, S.B. (2014). Scheduling and allocation of tasks and virtual machines in cloud computing. Life Science Journal, 11(8), 532-538.
  29. Utepov, E.B., Burshukova, G.A., Ibraeva, G.M., Berkinbaeva, A.S., Utepov, E.N., Abuova, R.Z., & Nurgaliev, A.K. (2015). Development of iron-based alloys with improved damping capacity and good mechanical properties. Metallurgist, 59, 229-235.https://doi.org/10.1007/s11015-015-0089-2
  30. Muhamedyev, R., Kiseleva, S., Gopejenko, V. I., Amirgaliyev, Y., Muhamedyeva, E., Gopejenko, A.V., & Abdoldina, F. (2016). Visualization of the renewable energy resources. Augmented Reality, Virtual Reality, and Computer Graphics, 218-227. https://doi.org/10.1007/978-3-319-40621-3_17
  31. Moshynskyi, V.S., Korniienko, V.Ya., Malanchuk, Ye.Z., Khrystyuk, A.O., Lozynskyi, V.H., & Cabana, E.C. (2021). Simulation of amber extraction processes from sandy and clay rocks with stope filling. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 35-41. https://doi.org/10.33271/nvngu/2021-6/035
  32. Malanchuk, Z., Moshynskyi, V., Martyniuk, P., Stets, S., & Galiyev, D. (2020). Modelling hydraulic mixture movement along the extraction chamber bottom in case of hydraulic washout of the tuff-stone. E3S Web of Conferences, 211, 01011.https://doi.org/10.1051/e3sconf/202020101011
  33. Gornostayev, S.S., Crocket, J.H., Mochalov, A.G., & Laajoki, K.V.O. (1999). The platinum-group minerals of the Baimka placer deposits, Aluchin horst. Canadian Mineralogist, 37(5), 1117-1129.
  34. Malanchuk, Y., Moshynskyi, V., Khrystyuk, A., Malanchuk, Z., Korniyenko, V., & Zhomyruk, R. (2024). Modelling mineral reserve assessment using discrete kriging methods. Mining of Mineral Deposits, 18(1), 89-98. https://doi.org/10.33271/mining18.01.089
  35. Malanchuk, Z.R., Moshynskyi, V.S., Korniienko, V.Y., Malanchuk, Y.Z., & Lozynskyi, V.H. (2019). Substantiating parameters of zeolite-smectite puff-stone washout and migration within an extraction chamber. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 11-18. https://doi.org/10.29202/nvngu/2019-6/2
  36. Malanchuk, Ye., Korniienko, V., Moshynskyi, V., Soroka, V., Khrystyuk, A., & Malanchuk, Z. (2019). Regularities of hydromechanical amber extraction from sandy deposits. Mining of Mineral Deposits, 13(1), 49-57. https://doi.org/10.33271/mining13.01.049
  37. Sarycheva, L. (2003). Using GMDH in ecological and socio-economical monitoring problems. Systems Analysis Modelling Simulation, 43(10), 1409-1414. https://doi.org/10.1080/02329290290024925
  38. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining. London, United Kingdom: CRC Press, Book, 607 p. https://doi.org/10.1201/b19901
  39. Bazaluk, O., Slabyi, O., Vekeryk, V., Velychkovych, A., Ropyak, L., & Lozynskyi, V. (2021). A technology of hydrocarbon fluid production intensification by productive stratum drainage zone reaming. Energies, 14(12), 3514. https://doi.org/10.3390/en14123514
  40. Pavlychenko, A., & Kovalenko, A. (2013). The investigation of rock dumps influence to the levels of heavy metals contamination of soil. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 237-238. https://doi.org/10.1201/b16354-43
  41. Malanchuk, Z., Korniienko, V., Malanchuk, Y., & Moshynskyi, V. (2019). Analyzing vibration effect on amber buoying up velocity. E3S Web of Conferences, 123, 01018. https://doi.org/10.1051/e3sconf/201912301018
  42. Nadutyi, V. (2019). Analytical presentation of the separation of dense suspension for the extraction of amber. E3S Web of Conferences, 109, 00059.https://doi.org/10.1051/e3sconf/201910900059
  43. Malanchuk, Z.R., Khrystyuk, A.O., Stets, S.Ye., Semeniuk, V.V., & Malanchuk, L.O. (2022). Substantiation of research results on energy efficiency of basalt crushing. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 41-46. https://doi.org/10.33271/nvngu/2022-6/041
  44. Korniienko, V.Ya., Vasylchuk, O.Yu., Zaiets, V.V., Semeniuk, V.V., Khrystyuk, A.O., & Malanchuk, Ye.Z. (2022). Research of amber extraction technology by vibroclassifier. IOP Conference Series: Earth and Environmental Science, 1049, 012027. https://doi.org/10.1088/1755-1315/1049/1/012027
  45. Mikhlin, Y.V., & Zhupiev, A.L. (1997). An application of the inch algebraization to the stability of non-linear normal vibration modes. International Journal of Non-Linear Mechanics, 32(2), 393-409. https://doi.org/10.1016/s0020-7462(96)00047-9
  46. Korniyenko, V., Nadutyi, V., Malanchuk, Y., & Yeluzakh, M. (2020). Substantiating velocity of amber buoying to the surface of sludge-like rock mass. Mining of Mineral Deposits, 14(4), 90-96. https://doi.org/10.33271/mining14.04.090
  47. Korniyenko, V., Malanchuk, Y., Zaiets, V., Koziar, M., Vasylchuk, O., & Sobczyk, W. (2024). Modeling the impact of hydraulic frac-turing of amber-bearing rocks by a flooded jet in the erosion chamber on mining productivity. Inżynieria Mineralna, 2(1), 163-174. https://doi.org/10.29227/IM-2024-01-105
  48. Malanchuk, Z., Korniyenko, V., Malanchuk, Ye., Khrystyuk, A., & Kozyar, M. (2020). Identification of the process of hydromechanical extraction of amber. E3S Web of Conferences, 166, 02008. https://doi.org/10.1051/e3sconf/202016602008
  49. Korniienko, V., Malanchuk, Y., Zaiets, V., Semeniuk, V., & Kucheruk, M. (2023). Research of the dehydration process of amber-containing mining mass. Inżynieria Mineralna, 1(1(51)), 35-43. https://doi.org/10.29227/IM-2023-01-01
  50. Girard, V., Salpeteur, I., Dutta, S., Bauer, H., & Raju, S.V. (2015). An enigmatic piece of amber in the Oligocene of the Assam-Arakan Basin (Eastern India). Geobios, 48(1), 1-8. https://doi.org/10.1016/j.geobios.2014.12.001
  51. Pereira, R., de Souza Carvalho, I., Simoneit, B. R., & de Almeida Azevedo, D. (2009). Molecular composition and chemosystematic aspects of Cretaceous amber from the Amazonas, Araripe and Recôncavo basins, Brazil. Organic Geochemistry, 40(8), 863-875. https://doi.org/10.1016/j.orggeochem.2009.05.002
  52. Malanchuk, Z., Moshynskyi, V., Malanchuk, Y., & Korniienko, V. (2018). Physico-mechanical and chemical characteristics of amber. Solid State Phenomena, 277, 80-89. https://doi.org/10.4028/www.scientific.net/ssp.277.80
  53. Khrystyuk, A.O., & Malanchuk, E.Z. (2015). Mathematical modeling of processes of well hydraulic extraction of placer minerals. Bulletin of the Engineering Academy of Sciences, 4, 187-194.
  54. Malanchuk, Y., Moshynskyi, V., Korniienko, V., & Malanchuk, Z. (2018). Modeling the process of hydromechanical amber extraction. E3S Web of Conferences, 60, 00005. https://doi.org/10.1051/e3sconf/20186000005
  55. Lustyuk, M.G. (2005). Physical and technical basis of hydraulic extraction of lumpy materials from placer deposits. Ternopil, Ukraine: Publishing House PP DM, 240 p.
  56. Sobczyk, E.J., Kulpa, J., Kopacz, M., Sałamaga, M., & Sobczyk, W. (2024). Sustainable management of hard coal resources implemented by identifying risk factors in the mining process. Mineral Resources Management, 40(3), 23-48. https://doi.org/10.24425/gsm.2024.151526
  57. Malanchuk, Z.R., Korniienko, V.Ya., Zaiets, V.V., Vasylchuk, O.Yu., Kucheruk, M.O., & Semeniuk, V.V. (2023). Study of hydroerosion process parameters of zeolite-smectite tuffs and underlying rock. IOP Conference Series: Earth and Environmental Science, 1254, 012051. https://doi.org/10.1088/1755-1315/1254/1/012051
  58. Koziar, M. (2020). Results of research into the content of rare earth materials in man-made phosphogypsum deposits. Key Engineering Materials, 844, 77-87. https://doi.org/10.4028/www.scientific.net/KEM.844.77
  59. Nogaeva, K., Alpiyev, Y., Kozhonov, A., Korniyenko, V., & Malanchuk, Y. (2021). Technological basis of processing of serpentinite copper-gold ores in the Kyrgyz Republic. E3S Web of Conferences, 280, 08005. https://doi.org/10.1051/e3sconf/202128008005
  60. Malanchuk, Z., Zaiets, V., Tyhonchuk, L., Moshchych, S., Gayabazar, G., & Dang, P.T. (2021). Research of the properties of quarry tuff-stone for complex processing. E3S Web of Conferences, 280, 01003. https://doi.org/10.1051/e3sconf/202128001003
  61. Korniyenko, V., Malanchuk, Y., Khrystyuk, A., Kostrychenko, V., Shampikova, A., Nogaeva, K., & Kozhonov, A. (2021). Modeling the distribution of rock mass and native copper output by size classes during crushing. E3S Web of Conferences, 280, 01004. https://doi.org/10.1051/e3sconf/202128001004
  62. Malanchuk, Ye., Moshynskyi, V., Denisyuk, P., Malanchuk, Z., Khrystyuk, A., Korniienko, V., & Martyniuk, P. (2021). Regularities in the distribution of granulometric composition of tuff while crushing. Mining of Mineral Deposits, 15(1), 66-74. https://doi.org/10.33271/mining15.01.066
  63. Лицензия Creative Commons