Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

High-frequency demagnetization of magnetite suspensions

Olena Berezniak1, Ihor Mladetskyi1, Oleksandr Berezniak1, Oleksandr Dreshpak1, Oleksandr Akimov2

1Dnipro University of Technology, Dnipro, Ukraine

2Interregional Academy of Personnel Management, Kyiv, Ukraine


Min. miner. depos. 2025, 19(2):132-140


https://doi.org/10.33271/mining19.02.132

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to substantiate the high-frequency demagnetization technology parameters for magnetite suspensions, taking into account the established patterns of changes in the electrical resistivity of circulating water and changes in magnetic field induction depending on the concentration of dissolved salts.

      Methods. The circulating water from the processing plant is a part of the magnetite suspension. The change in the electrical conductivity indices of this water was studied under laboratory conditions using the conductometric method with alternating current of various frequencies. The degree of demagnetization of the magnetite particles was determined based on the study of the sedimentation kinetics of both magnetized and demagnetized magnetite suspensions. A special device was used to demagnetize the magnetite particles. It is a solenoid which, together with a capacitor, forms an oscillatory circuit in which damped high-frequency electromagnetic oscillations are periodically generated by current pulses supplied.

      Findings. The aspects of the high-frequency electromagnetic field propagation within the magnetite suspension have been revealed, taking into account the field energy dissipation factor and the influence of the suspension technological parameters (electrical resistivity of the circulating water, solid phase concentration) on the characteristics of the electromagnetic field. A relationship between the concentration of magnetite in the suspension and the electromagnetic field dissipation factor has been determined. As a result of determining the sedimentation kinetics, it has been found that the settling rate of the demagnetized magnetite suspension is lower compared to the magnetized one.

      Originality. The dependencies of the change in the electrical resistivity of the circulating water from the processing plant on the salt content, as well as the changes in the magnetic field induction along the solenoid axis on the distance from its edge and the surrounding medium, have been obtained. It has been found that to ensure complete demagnetization of magnetite, it should be demagnetized at least twice within the solenoid operating space. This provides a maximum suspension flow velocity of 5.6 m/s, while the sedimentation rate of the demagnetized suspension decreases by a factor of 3.1 compared to the magnetized one. This indicates the effectiveness of demagnetization and the destruction of interparticle magnetic interactions.

      Practical implications. The research can serve as a basis for determining rational parameters in the design of high-frequency demagnetizing devices. Their application makes it possible to improve the beneficiation indicators of magnetite ores, bringing them closer to theoretically possible levels, enhancing the efficiency of subsequent classification processes, and reducing the load on grinding equipment.

      Keywords: magnetite, conductometric method, demagnetization, suspension, electrical resistivity, dissipation


      REFERENCES

  1. Kharytonov, M., Berezniak, O., Klimkina, I., Rula, I., Eckart, S., Guhl, S., & Wiche, O. (2025). Prerequisites for using trace and rare-earth elements from the fly ash of Ukrainian thermal power stations. International Journal of Environmental Studies, 82(2), 1-11. https://doi.org/10.1080/00207233.2024.2444196
  2. Pelevin, A.E. (2019). Improving magnetite concentrate quality in an alternating magnetic field. Obogashchenie Rud, 19-24. https://doi.org/10.17580/or.2019.06.04
  3. Kubekova, S.N., Kapralova, V.I., Ibraimova, G.T., & Batyrbayeva, A.A. (2016). Enrichment wastes’ processing of manganiferous ores with the use of mechanochemical methods. International Journal of Environmental and Science Education, 11(11), 4855-4869.
  4. Kubekova, S.N., Kapralova, V.I., & Telkov, S.A. (2016). Silicophosphate sorbents, based on ore-processing plants’ waste in Kazakhstan. International Journal of Environmental and Science Education, 11(12), 4985-4996.https://doi.org/10.32014/2019.2518-170X.93
  5. Kubekova, S.N., Kapralova, V.I., Ibraimova, G.T., Raimbekova, A.S., & Ydyrysheva, S.K. (2022). Mechanically activated silicon-phosphorus fertilisers based on the natural and anthropogenic raw materials of Kazakhstan. Journal of Physics and Chemistry of Solids, 162, 110518. https://doi.org/10.1016/j.jpcs.2021.110518
  6. Raimbekova, A.S., Kapralova, V.I., Popova, A.K., & Kubekova, S.N. (2022). The study of manganese phosphate materials based on enrichment wastes. Journal of Chemical Technology and Metallurgy, 57(1), 176-183.
  7. Moldabayeva, G.Z., Turdiyev, M.F., Suleimenova, R.T., Buktukov, N.S., Efendiyev, G.М., Kodanova, S.K., & Tuzelbayeva, S.R. (2025). Application of the integrated well-surface facility production system for selecting the optimal equipment operating mode. Kompleksnoe Ispolzovanie Mineralnogo Syra, 335(4), 96-109. https://doi.org/10.31643/2025/6445.44
  8. Akimova, L., Akimov, O., Maksymenko, T., Hbur, Z., & Orlova, V. (2020). Adaptive management of entrepreneurship model as a component of enterprise resource planning. Academy of Entrepreneurship Journal, 26(3), 1-8.
  9. Turegeldinova, A., Amralinova, B., Fodor, M. M., Rakhmetullina, S., Konurbayeva, Z., & Kiizbayeva, Z. (2024). STEM and the creative and cultural industries: the factors keeping engineers from careers in the CCIs. Frontiers in Communication, 9, 1507039. https://doi.org/10.3389/fcomm.2024.1507039
  10. Voronina, Y., Lopushynskyi, I., Grechanyk, B., Vahonova, O., Kondur, A., & Akimov, O. (2024). Economic and environmental component in the field of sustainable development management. Calitatea, 25(201), 7-14. https://doi.org/10.47750/QAS/25.201.02
  11. Manouchehri, H.R., Hanumantha Rao, K., & Forssberg, K.S.E. (2000). Review of electrical separation methods: Part 1: Fundamental aspects. Mining, Metallurgy & Exploration, 17(1), 23-36. https://doi.org/10.1007/BF03402825
  12. Nzeh, N.S., & Popoola, P.A. (2024). Physical beneficiation of heavy minerals – Part 2: A state of the art literature review on magnetic and electrostatic concentration techniques. Heliyon, 10(11). https://doi.org/10.1016/j.heliyon.2024.e32201
  13. Yessengaziyev, A., Mukhanova, A., Tussupbayev, N., & Barmenshinova, M. (2022). The usage of basic and ultramicroheterogenic flotation reagents in the processing of technogenic copper-containing raw materials. Journal of Chemical Technology and Metallurgy, 57(6), 1235-1242.
  14. Myrzakulov, M.K., Jumankulova, S.K., Barmenshinova, M.B., Martyushev, N.V., Skeeba, V.Y., Kondratiev, V.V., & Karlina, A.I. (2024). Thermodynamic and technological studies of the electric smelting of Satpaevsk ilmenite concentrates. Metals, 14(11), 1211. https://doi.org/10.3390/met14111211
  15. Nzeh, N.S., Popoola, P.A., Adeleke, A., & Adeosun, S. (2024). Physical concentration of heavy minerals: A brief review on low and high intensity magnetic separation process techniques. JOM, 76(3), 1329-1344. https://doi.org/10.1007/s11837-023-06251-1
  16. Turkenich, A.M. (2001). A novel method for improvement of quality of a magnetite concentrate. Physical Separation in Science and Engineering, 10(4), 207-208. https://doi.org/10.1155/2001/95484
  17. Berezniak, O., Mladetskyi, I., & Berezniak, O. (2025). Improving the quality of magnetite concentrates due to high-frequency demagnetisation. IOP Conference Series: Earth and Environmental Science, 1481(1), 012019. https://doi.org/10.1088/1755-1315/1481/1/012019
  18. Ogonowski, S., Wołosiewicz-Głąb, M., Ogonowski, Z., Foszcz, D., & Pawełczyk, M. (2018). Comparison of wet and dry grinding in electromagnetic mill. Minerals, 8(4), 138. https://doi.org/10.3390/min8040138
  19. Rudenko, O., Galkina, D., Sadenova, M., Beisekenov, N., Kulisz, M., & Begentayev, M. (2024). Modelling the properties of aerated concrete on the basis of raw materials and ash-and-slag wastes using machine learning paradigm. Frontiers in Materials, 11, 1481871. https://doi.org/10.3389/fmats.2024.1481871
  20. Sahu, S.N., Behera, P., Sahoo, S., & Sushobhan, B.R. (2025). A critical review on the magnetisation roasting of low/lean-grade iron ore resources using renewable/non-renewable reductant: An approach towards iron ore sustainability. Journal of Sustainable Metallurgy, 11(1), 160-185. https://doi.org/10.1007/s40831-024-01001-2
  21. Roy, S.K., Nayak, D., & Rath, S.S. (2020). A review on the enrichment of iron values of low-grade iron ore resources using reduction roasting-magnetic separation. Powder Technology, 367, 796-808. https://doi.org/10.1016/j.powtec.2020.04.047
  22. Béguin, A., & Fabian, K. (2021). Demagnetisation energy and internal stress in magnetite from temperature-dependent hysteresis measurements. Geophysical Research Letters, 48, e2021GL096147. https://doi.org/10.1029/2021GL096147
  23. Berezniak, A.A., Berezniak, E.A., Gumerov, M.E., & Polyga, D.A. (2012). Eksperimental’nyye rezul’taty razmagnichivaniya magnetita v impul’snom rezhime. Zbahachennya Korysnykh Kopalyn, 50(91), 111-114.
  24. Utepov, E.B., Burshukova, G.A., Ibraeva, G.M., Berkinbaeva, A.S., Utepov, E.N., Abuova, R.Z., & Nurgaliev, A.K. (2015). Development of iron-based alloys with improved damping capacity and good mechanical properties. Metallurgist, 59, 229-235. https://doi.org/10.1007/s11015-015-0089-2
  25. Myrzakulov, M.K., Dzhumankulova, S.K., Yelemessov, K.K., Barmenshinova, M.B., Martyushev, N.V., Skeeba, V.Y., Kondratiev, V.V., & Karlina, A.I. (2024). Analysis of the effect of fluxing additives in the production of titanium slags in laboratory conditions. Metals, 14(12), 1320. https://doi.org/10.3390/met14121320
  26. Ponkratov, Y.V. (2023). High-temperature test of tin-lithium CPS under deuterium plasma irradiation conditions. Journal of Nuclear Materials, 587, 154754.https://doi.org/10.1016/j.jnucmat.2023.154754
  27. Utepov, E.B., Omirbai, R.S., Suleev, D.K., Burshukova, G.A., Berkinbaeva, A.S. Nurgaliev, A.K., & Ibraeva, G.M. (2015). Developing metallic damping materials. Metallurgist, 58(11-12), 1025-1031. https://doi.org/10.1007/s11015-015-0035-3
  28. Kuandykova, A. (2024). Production of composite cement clinker based on industrial waste. Journal of Composites Science, 8(7), 257.https://doi.org/10.3390/jcs8070257
  29. Delgadillo, J.A., Lopez-Valdivieso, A., & Tello, A. (2008). Optimization of a grinding and classification circuit of a magnetite ore processing plant through computer simulation. Mining, Metallurgy & Exploration, 25(4), 223-228. https://doi.org/10.1007/bf03403412
  30. Zhang, X., Gu, X., Han, Y., Parra-Álvarez, N., Claremboux, V., & Kawatra, S. K. (2019). Flotation of iron ores: A review. Mineral Processing and Extractive Metallurgy Review, 42(3), 184-212. https://doi.org/10.1080/08827508.2019.1689494
  31. Dunlop, D.J. (1981). The rock magnetism of fine particles. Physics of the Earth and Planetary Interiors, 26(1-2), 1-26. https://doi.org/10.1016/0031-9201(81)90093-5
  32. Berezniak, O., & Berezniak, O. (2015). Pulse method of magnetite demagnetising. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 547-550. https://doi.org/10.1201/b19901-94
  33. Thiel, F. (2009). Demagnetisation of layered ferromagnetic structures for magnetically shielding: frequency considerations. IEEE Transactions on Magnetics, 45(12), 5307-5314. https://doi.org/10.1109/tmag.2009.2022935
  34. Heider, F., Dunlop, D.J., & Soffel, H.C. (1992). Low‐temperature and alternating field demagnetisation of saturation remanence and thermoremanence in magnetite grains (0.037 μm to 5 mm). Journal of Geophysical Research: Solid Earth, 97(B6), 9371-9381. https://doi.org/10.1029/91jb03097
  35. Тolmachov, S.Т., Ilchenko, О.V., & Vlasenko, V.А. (2022). Calculation and optimization of pulse devices for demagnetisation of ferrous metal slurries. Journal of Kryvyi Rih National University, 54, 27-33. https://doi.org/10.31721/2306-5451-2022-1-54-27-33
  36. Hu, Z., Wu, K., Wang, Z., Shah, K. J., & Sun, Y. (2024). Research progress of magnetic flocculation in water treatment. Magnetochemistry, 10(8), 56. https://doi.org/10.3390/magnetochemistry10080056
  37. Roy, S.B. (2023). Experimental techniques in magnetism and magnetic materials. Cambridge, United Kingdom: Cambridge University Press, 340 p. https://doi.org/10.1017/9781108784948.019
  38. Arvidson, B.R. (2013). Processing high-grade concentrates from challenging low-grade iron ore deposits. Transactions of the Indian Institute of Metals, 66(5), 467-474. https://doi.org/10.1007/s12666-013-0294-2
  39. Bulayani, M., Raghupatruni, P., Mamvura, T., & Danha, G. (2024). Exploring low-grade iron ore beneficiation techniques: A comprehensive review. Minerals, 14(8), 796. https://doi.org/10.3390/min14080796
  40. Lu, L. (2021). Part Two – Extraction, comminution, classification, and beneficiation of iron ore. Iron Ore: Mineralogy, Processing and Environmental Sustainability, 249-487. https://doi.org/10.1016/B978-0-12-820226-5.00072-0
  41. METINVEST. (n.d.). Zalizorudna syrovyna. Retrived from: https://metinvestholding.com/ua/products/semi-finished-products/iron-ore-concentrate
  42. Alaei, S.P., & Dahlberg, E.D. (2022). Effect of magnetic interactions on magnetic remanence in a fine particle system. IEEE Transactions on Magnetics, 58(8), 1-9. https://doi.org/10.1109/tmag.2022.3177807
  43. Thiel, F. (2009). Demagnetisation of layered ferromagnetic structures for magnetically shielding: Frequency considerations. IEEE Transactions on Magnetics, 45(12), 5307-5314. https://doi.org/10.1109/tmag.2009.2022935
  44. Лицензия Creative Commons