Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Improvement of blasting technology at gold-ore mining enterprises using contour blasting

Yerdulla Serdaliyev1, Bagdat Bakhramov1, Abylay Alip1

1Satbayev University, Almaty, Kazakhstan


Min. miner. depos. 2025, 19(2):83-94


https://doi.org/10.33271/mining19.02.083

Full text (PDF)


      ABSTRACT

      Purpose. The research purpose is to develop and substantiate recommendations for improving the technology of drilling-blasting operations in open-pit mining of gold-ore deposits. The research is aimed at optimizing the drilling-blasting process parameters taking into account physical-mechanical properties of rocks, conditions of ore mass occurrence and requirements for the quality of rock mass crushing.

      Methods. Qualitative and quantitative analysis methods are used for the research. The compliance of the drilling-blasting technology with the design solutions is assessed, and the actual condition of the quarry benches and near-wall mass after blasting is analyzed. A numerical model describing the influence of contour blasthole charges on the near-wall mass has been developed, taking into account the parameters of the bench height and charge diameter. Particular attention is paid to the development of recommendations for improving the quality of ore mass breaking, decreasing dilution and reducing the near-wall mass breaking. The effectiveness of the proposed solutions is confirmed by conducting a series of test blasts with subsequent assessment of their results.

      Findings. The research results have shown that the existing parameters of drilling-blasting operations at the Pustynnoye Mine do not fully comply with the mining-technical conditions, which leads to inconsistency with the design slope angles and dilution of rock mass. Implementation of the presplitting method and optimization of charge parameters make it possible to improve the quality of mass breaking and reduce the seismic impact. The resulting dependences will help to accurately select blast parameters, improving the efficiency of drilling-blasting operations.

      Originality. The novelty is in the development and implementation of an integrated approach to the optimization of drilling-blasting operations at the Pustynnoye Mine. The research has identified the optimal parameters, including blasthole diameters, charges for splitting, explosive density and stemming material granulometric composition.

      Practical implications. Implementation of the proposed methods will increase the efficiency of drilling-blasting operations, improve rock mass crushing, stabilize slopes and reduce seismic impact on the near-wall mass. Optimizing parameters such as blasthole diameters, specific explosive consumption and charge densities will reduce costs while maintaining efficiency. The developed passports of drilling-blasting operations will help to adapt the processes to changing conditions and ensure the safety and accuracy of mineral extraction.

      Keywords: mining, quarry, bench, blasting operations, slope stability, crushing, rock mass, blast energy, failure zones


      REFERENCES

  1. Begalinov, A. (2010). Programma “Zoloto Kazakhstana”. Gornyy Zhurnal Kazakhstana, 6, 8-10.
  2. Begalinov, A., Serdaliyev, Y., Abshayakov, E., Bakhramov, B., & Baigenzhenov, O. (2015). Extraction technology of fine vein gold ores. Metallurgical & Mining Industry, 7(4), 312-320.
  3. Akhmetkanov, D.K. (2023). New variants for wide orebodies high-capacity mining Systems with controlled and continuous in-line stoping. News of the Academy of Sciences of the Republic of Kazakhstan, Series of geology and technical sciences, 459(3), 6-21. https://doi.org/10.32014/2023.2518-170X.295
  4. Serdaliyev, Y., Iskakov, Y., Bakhramov, B., & Amanzholov, D. (2022). Research into the influence of the thin ore body occurrence elements and stope parameters on loss and dilution values. Mining of Mineral Deposits, 16(4), 56-64. https://doi.org/10.33271/mining16.04.056
  5. Nurpeisova, M.B., Salkynov, A.T., Soltabayeva, S.T., & Miletenko, N.A. (2024). Patterns of development of geomechanical processes during hybrid open pit/underground mineral mining. Eurasian Mining, 41(1), 7-11. https://doi.org/10.17580/em.2024.01.02
  6. Kalybekov, T., Rysbekov, K.B., Toktarov, A.A., & Otarbaev, O.M. (2019). Underground mine planning with regard to preparedness of mineral reserves. Mining Informational and Analytical Bulletin, 5, 34-43.
  7. Saik, P., Cherniaiev, O., Anisimov, O., & Rysbekov, K. (2023). Substantiation of the direction for mining operations that develop under conditions of shear processes caused by hydrostatic pressure. Sustainability, 15(22), 15690. https://doi.org/10.3390/su152215690
  8. Rudenko, O., Galkina, D., Sadenova, M., Beisekenov, N., Kulisz, M., & Begentayev, M. (2024). Modelling the properties of aerated concrete on the basis of raw materials and ash-and-slag wastes using machine learning paradigm. Frontiers in Materials, 11, 1481871. https://doi.org/10.3389/fmats.2024.1481871
  9. Serdaliyev, Y., Iskakov, Y., & Amanzholov, D. (2023). Selection of the optimal composition and analysis of the detonating characteristics of low-density mixed explosives applied to break thin ore bodies. Mining of Mineral Deposits, 17(4), 53-60. https://doi.org/10.33271/mining17.04.053
  10. Bazaluk, O., Petlovanyi, M., Zubko, S., Lozynskyi, V., & Sai, K. (2021). Instability assessment of hanging wall rocks during underground mining of iron ores. Minerals, 11(8), 858. https://doi.org/10.3390/min11080858
  11. Bazaluk, O., Petlovanyi, M., Sai, K., Chebanov, M., & Lozynskyi, V. (2024). Comprehensive assessment of the earth's surface state disturbed by mining and ways to improve the situation: case study of Kryvyi Rih Iron-ore Basin, Ukraine. Frontiers in Environmental Science, 12, 1480344. https://doi.org/10.3389/fenvs.2024.1480344
  12. Kuttykadamov, M.E., Rysbekov, K.B., Milev, I., Ystykul, K.A., & Bektur, B.K. (2016). Geodetic monitoring methods of high-rise constructions deformations with modern technologies application. Journal of Theoretical and Applied Information Technology, 93(1), 24-31.
  13. Kalybekov, T., Rysbekov, K., & Zhakypbek, Y. (2015). Efficient land use in open-cut mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 287-291. https://doi.org/10.1201/b19901-51
  14. Zhakypbek, Y., Belkozhayev, A.M., Kerimkulova, A., Kossalbayev, B.D., Murat, T., Tursbekov, S., & Allakhverdiev, S.I. (2025). MicroRNAs in plant genetic regulation of drought tolerance and their function in enhancing stress adaptation. Plants, 14(3), 410. https://doi.org/10.3390/plants14030410
  15. Kalybekov, T., Sandibekov, M., Rysbekov, K., & Zhakypbek, Y. (2019). Substantiation of ways to reclaim the space of the previously mined-out quarries for the recreational purposes. E3S Web of Conferences, 123, 01004. https://doi.org/10.1051/e3sconf/201912301004
  16. Begalinov, A., Khomiakov, V., Serdaliyev, Y., Iskakov, Y., & Zhanbolatov, A. (2020). Formulation of methods reducing landslide phenomena and the collapse of career slopes during open-pit mining. E3S Web of Conferences, 168, 00006. https://doi.org/10.1051/e3sconf/202016800006
  17. Begalinov, A.B., Serdaliev, E.T., Iskakov, E.E., & Amanzholov, D.B. (2013). Shock blasting of ore stockpiles by low-density explosive charges. Journal of Mining Science, 49(6), 926-931. https://doi.org/10.1134/s1062739149060129
  18. Saik, P., Rysbekov, K., Kassymkanova, K.K., Lozynskyi, V., Kyrgizbayeva, G., Moldabayev, S., Babets, D., & Salkynov, A. (2024). Investigation of the rock mass state in the near-wall part of the quarry and its stability management. Frontiers in Earth Science, 12, 1395418. https://doi.org/10.3389/feart.2024.1395418
  19. Serdaliyev, Y., & Iskakov, Y. (2024). Research into mass stress and failure zone parameters during blasting of fractured high benches using blasthole charges. Mining of Mineral Deposits, 18(4), 98-108. https://doi.org/10.33271/mining18.04.098
  20. Serdaliyev, Y.T., Iskakov, Y.Y., Bakhramov, B.A., & Kenesov, Zh.G. (2024). Optimization of ore crushing in open-pit gold mining. Mining Journal of Kazakhstan, 12, 4-9. https://doi.org/10.48498/minmag.2024.236.12.002
  21. Plan gornykh rabot mestorozhdeniya “Pustynnoe” (korrektirovka ranee vypolnennogo proekta). (2023). Tom 1. Kniga 1. Poyasnitelnaya zapiska. Almaty, Kazakhstan: AO “AK Altynalmas”, 196 s.
  22. Obosnovanie parametrov ustoychivykh bortov karyera mestorozhdeniya “Pustynnoe” na osnove inzhenerno-geologicheskikh dannykh. (2012). Otchet o NIR. Karaganda, Kazakhstan: TOO “Alyans”, 89 s.
  23. Khomyakov, V.A., Iskakov, E.E., & Serdaliev, E.T. (2013). Investigation of gravelly soil during underground construction in Almaty. Soil Mechanics and Foundation Engineering, 50(4),171-177. https://doi.org/10.1007/s11204-013-9230-z
  24. Ahmadi, H., Hussaini, M.R., Yousufi, A., Bekbotayeva, A., Baisalova, A., Amralinova, B., Mataibayeva, I., Rahmani, A.B., Pekkan, E., & Sahak, N. (2023). Geospatial insights into ophiolitic complexes in the Cimmerian realm of the Afghan central block (Middle Afghanistan). Minerals, 13(11), 1453. https://doi.org/10.3390/min13111453
  25. Dyachkov, B.A., Amralinova, B.B., Mataybaeva, I.E., Dolgopolova, A.V., Mizerny, A.I., & Miroshnikova, A.P. (2017). Laws of formation and criteria for predicting nickel content in weathering crusts of east Kazakhstan. Journal of the Geological Society of India, 89(5), 605-609. https://doi.org/10.1007/s12594-017-0650-7
  26. Hoek, E., & Brown, E.T. (2019). The Hoek-Brown failure criterion and GSI – 2018 edition. Journal of Rock Mechanics and Geotechnical Engineering, 11(3), 445-463. https://doi.org/10.1016/j.jrmge.2018.08.001
  27. Moldabayev, S., Sdvyzhkova, O., Babets, D., Amankulov, M., & Nurmanova, A. (2024). Numerical simulation of a pit wall stability considering seismic impact in terms of ultra-deep open-pit mine. Studies in Systems, Decision and Control, 224, 121-134. https://doi.org/10.1007/978-3-031-70725-4_9
  28. Sdvyzhkova, O., Moldabayev, S., Bascetin, A., Babets, D., Kuldeyev, E., Sultanbekova, Zh., Amankulov, M., & Issakov, B. (2022). Probabilistic assessment of slope stability at ore mining with steep layers in deep open pits. Mining of Mineral Deposits, 16(4), 11-18. https://doi.org/10.33271/mining16.04.011
  29. Zhao, H., Tian, Y., Guo, Q., Li, M., & Wu, J. (2020). The slope creep law for a soft rock in an open-pit mine in the Gobi region of Xinjiang, China. International Journal of Coal Science & Technology, 7(2), 371-379. https://doi.org/10.1007/s40789-020-00305-4
  30. Kholodenko, T., Ustimenko, Y., Pidkamenna, L., & Pavlychenko, A. (2014). Ecological safety of emulsion explosives use at mining enterprises. Progressive Technologies of Coal, Coalbed Methane, and Ores Mining, 255-260. https://doi.org/10.1201/b17547
  31. Kholodenko, T., Ustimenko, Y., Pidkamenna, L., & Pavlychenko, A. (2015). Technical, economic and environmental aspects of the use of emulsion explosives by ERA brand in underground and surface mining. New Developments in Mining Engineering 2015: Theoretical and Practical Solutions of Mineral Resources Mining, 211-219. https://doi.org/10.1201/b19901-38
  32. Khomenko, O., Kononenko, M., & Myronova, I. (2013). Blasting works technology to decrease an emission of harmful matters into the mine atmosphere. Annual Scientific-Technical Collection – Mining of Mineral Deposit, 231-235. https://doi.org/10.1201/b16354-43
  33. Kyelgyenbai, K., Pysmennyi, S., Chukharev, S., Purev, B., & Jambaa, I. (2021). Modelling for degreasing the mining equipment downtime by optimizing blasting period at Erdenet surface mine. E3S Web of Conferences, 280, 08001. https://doi.org/10.1051/e3sconf/202128008001
  34. Kononenko, M., Khomenko, O., Cabana, E., Mirek, A., Dyczko, A., Prostański, D., & Dychkovskyi, R. (2023). Using the methods to calculate parameters of drilling and blasting operations for emulsion explosives. Acta Montanistica Slovaca, 28(3), 655-667. https://doi.org/10.46544/ams.v28i3.10
  35. Kononenko, M., Khomenko, O., Kovalenko, I., Kosenko, A., Zahorodnii, R., & Dychkovskyi, R. (2023). Determining the performance of explosives for blasting management. Rudarsko Geolosko Naftni Zbornik, 38(3), 19-28. https://doi.org/10.17794/rgn.2023.3.2
  36. Sobolev, V.V., & Usherenko, S.M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV (Proceedings), 134, 977-982. https://doi.org/10.1051/jp4:2006134149
  37. Malanchuk, Z., Zaiets, V., Tyhonchuk, L., Moshchych, S., Gayabazar, G., & Dang, P.T. (2021). Research of the properties of quarry tuff-stone for complex processing. E3S Web of Conferences, 280, 01003. https://doi.org/10.1051/e3sconf/202128001003
  38. Chernai, A.V., Sobolev, V.V., Chernai, V.A., Ilyushin, M.A., & Dlugashek, A. (2003). Laser ignition of explosive compositions based on di-(3-hydrazino-4-amino-1,2,3-triazole)-copper(II) perchlorate. Combustion, Explosion and Shock Waves, 39(3), 335-339. https://doi.org/10.1023/A:1023852505414
  39. Lozynskyi, V., Yussupov, K., Rysbekov, K., Rustemov, S., & Bazaluk, O. (2024). Using sectional blasting to improve the efficiency of making cut cavities in underground mine workings. Frontiers in Earth Science, 12, 1366901. https://doi.org/10.3389/feart.2024.1366901
  40. Efendiyev, G.M., Moldabayeva, G.Z., Buktukov, N.S., & Kuliyev, M.Y. (2024). Comprehensive cementing quality assessment and risk management system. SOCAR Proceedings, 4, 42-47. https://doi.org/10.5510/OGP20240401015
  41. Kezembayeva, G., Rysbekov, K., Dyussenova, Z., Zhumagulov, A., Umbetaly, S., Barmenshinova, M., Yerkezhan, B., & Zhakypbek, Y. (2025). Public health risk assessment of quantitative emission from a molybdenum production plant: Case study of Kazakhstan. Engineered Science, 34, 1454. https://doi.org/10.30919/es1454
  42. Konysbayeva, A., Yessimsiitova, Z., Toktar, M., Mutushev, A., Zhakypbek, Y., Tursbekov, S., Tursbekova, G., Kozhayev, Z., Kozhamzharova, A., Mombekov, S., & Raheem, S. (2025). Result of reclamation of man-made dumps from phosphorite deposits in the semi-desert zone of Kazakhstan. PloS ONE, 20(2), e0317500. https://doi.org/10.1371/journal.pone.0317500
  43. Zhang, X., Li, Z., Wei, Z., & Gao, W. (2024). Experimental and numerical study on the effect of three-hole simultaneous blasting technology on open-pit mine bench blasting. Applied Sciences, 14(5), 2169. https://doi.org/10.3390/app14052169
  44. Yu, K., Lin, P., Chitombo, G., Ma, L., & Peng, C. (2024). Study on the optimization of blasting parameters and blastholes charging structure for broken orebody. Tunnelling and Underground Space Technology, 152, 105948. https://doi.org/10.1016/j.tust.2024.105948
  45. Rakishev, B.R. (1998). Energoemkost mekhanicheskogo razrusheniya gornykh porod. Almaty, Kazakhstan: Baspager, 210 s.
  46. Serdaliev, E.T., Iskakov, E.E., Amanzholov, D.B., & Shaldunov, N.P. (2024). Optimizatsiya parametrov otboyki rudnykh tel metodom modelirovaniya s primeneniem spetsialnykh integrirovannykh programmnykh produktov. Gornyy Zhurnal Kazakhstana, 8, 20-25. https://doi.org/10.48498/minmag.2024.232.8.007
  47. Serdaliev, E.T., Iskakov, E.E., Bakhramov, B.A., & Amanzholov, D.B. (2023). Issledovanie seysmicheskogo vozdeystviya vzryva na massiv pri otrabotke malomoshchnykh rudnykh zalezhey. Gornyy Zhurnal Kazakhstana, 9, 8-13. https://doi.org/10.48498/minmag.2023.221.9.002
  48. Лицензия Creative Commons