Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Reliability control of mapping dataset on small subsurface geothermal gradient, a case study in the Zagreb geothermal field, Croatia

Marija Jurilj1, Ivica Pavičić1, Tomislav Malvić1

1Faculty of Mining, Geology and Petroleum Engineering University of Zagreb, Zagreb, Croatia


Min. miner. depos. 2025, 19(2):1-9


https://doi.org/10.33271/mining19.02.001

Full text (PDF)


      ABSTRACT

      Purpose. The research aims to use interpolation methods for mapping, such as Inverse Distance Weighting (IDW), as well as normality tests on geothermal gradient data from the Zagreb geothermal field (ZGF) in the Croatian part of Pannonian Basin System (CPBS).

      Methods. The IDW method is applied to original small (8 values) and artificial added (45 values) datasets. The IDW method and a comparison of three geothermal gradient maps (8, 45 and 53 data, respectively) are applied for the ZGF breccia-fractured carbonate reservoir. The maps are compared visually and using mean square error / root mean square error (MSE / RMSE). Dataset is tested on normal distribution (Shapiro-Wilk and Kolmogorov-Smirnov tests, Q-Q plot).

      Findings. The insufficient amount of data is the main shortcoming for any subsurface reservoir characterisation. The IDW method has successfully outlined the main reservoir geothermal gradient zones. Increasing dataset with artificial values sampled onto original map (8 values) showed that starting dataset is enough reliable for basic reservoir characterisation. Further reservoir development should be based not on numerous new wells, but on the development of existing wells, including new trajectories and more precise determination of drainage radius, capacity and temperature decline over time.

      Originality. For the first time IDW, supplemented with normality tests and artificial sampling based on original small datasets, is applied as a development method in the geothermal reservoir of the CPBS area.

      Practical implications. This research is a necessary step in determining the future planning of geothermal reservoir development in the Zagreb urban area. This can be primary or additional approach for a similar reservoir with a small sample, while for a reservoir with a large sample it can show the meaningfulness of choosing an interpolation method.

      Keywords: Croatia Pannonian Basin System, Zagreb, geothermal field, Inverse Distance Weighting (IDW), formal normality tests, Q-Q plot, geothermal gradient, small dataset


      REFERENCES

  1. Malvić, T. (2008). Kriging, cokriging or stochastical simulations, and the choice between deterministic or sequential approaches. Geologia Croatica, 61(1), 37-47.https://doi.org/10.4154/gc.2008.06
  2. Tuschl, M., Kurevija, T., Krpan, M., & Macenić, M. (2022). Overview of the current activities related to deep geothermal energy utilisation in the Republic of Croatia. Clean Technologies and Environmental Policy, 24, 3003-3031. https://doi.org/10.1007/s10098-022-02383-1
  3. Guzović, Z., Lončar, D. & Ferdelji, N. (2010). Possibilities of electricity generation in the Republic of Croatia by means of geothermal energy. Energy, 55(8), 3429-3440. https://doi.org/10.1016/j.energy.2010.04.036
  4. Guzović, Z., Majcen, B., & Cvetković, S. (2012). Possibilities of electricity generation in the Republic of Croatia from medium-temperature geothermal sources. Applied Energy, 98, 404-414. https://doi.org/10.1016/j.apenergy.2012.03.064
  5. Malvić, T., & Medunić, G. (2015). Statistika u geologiji. Zagreb, Croatia: University of Zagreb, Mining-Geological-Petroleum Faculty and Faculty of Natural Science, 88 p.
  6. Ivšinović, J., & Malvić, T. (2022). Comparison of mapping efficiency for small datasets using inverse distance weighting vs. moving average, Northern Croatia Miocene hydrocarbon reservoir. Geologija, 65(1), 47-57.https://doi.org/10.5474/geologija.2022.003
  7. Borović, S., Pola, M., Pavičić, I., & Špelić, M. (2021). Utilization of vintage hydrocarbon exploration data in geothermal research: The case study of Zagreb Geothermal Field (Croatia). World Geothermal Congress 2020 + 1, 10.
  8. Lučić, D., Saftić, B., Krizmanić, K., Prelogović, E., Britvić, V., Mesić, I., & Tadej, J. (2001). The Neogene evolution and hydrocarbon potential of the Pannonian Basin in Croatia. Marine and Petroleum Geology, 18, 133-147. https://doi.org/10.1016/S0264-8172(00)00038-6
  9. Pavelić, D. (2001). Tectonostratigraphic model for the North Croatian and North Bosnian sector of the Miocene Pannonian Basin system. Basin research, 13(3), 359-376.https://doi.org/10.1046/j.0950-091x2001.00155.x
  10. Pavelić, D., & Kovačić, M. (2018). Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A review. Marine and Petroleum Geology, 91, 455-469. https://doi.org/10.1016/j.marpetgeo.2018.01.026
  11. Saftić, B., Velić, J., Sztano, O., Juhasz, G., & Ivković, Ž. (2003). Tertiary subsurface facies, source rocks and hydrocarbon reservoirs in the SW part of the Pannonian Basin (Northern Croatia and South-Western Hungary). Geologia Croatica, 56(1), 101-122. https://doi.org/10.4154/232
  12. Velić, J., Weisser, M., Saftić, B., Vrbanac, B., & Ivković, Ž. (2002). Petroleum-geological characteristics and exploration level of tree Neogene depositional megacycles in the Croatian part of the Pannonian basin. Nafta: Exploration, Production, Processing, Petrochemistry, 53(6-7), 239-249.
  13. Vlahović, I., Tišljar, J., Velić, I., & Matičec, D. (2005). Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 220(3-4), 333-360. https://doi.org/10.1016/j.palaeo.2005.01.011
  14. Schmid, S., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler M., & Ustaszewski, K. (2008). The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss Journal of Geosciences, 101, 139-183.https://doi.org/10.1007/s00015-008-1247-3
  15. Pavičić, I., Rukavina, D., Matoš, B., & Tomljenović, B. (2019). Interpretation of the tectonic evolution of the western part of the Sava Depression: Structural analysis of seismic attributes and subsurface structural modeling. Journal of Maps, 15(2), 733-743. https://doi.org/10.1080/17445647.2019.1663374
  16. Macenić, M., Kurevija, T., & Medved, I. (2020). Novel geothermal gradient map of the Croatian part of the Pannonian Basin System based on data interpretation from 154 deep exploration wells. Renewable and Sustainable Energy Reviews, 132, 110069.https://doi.org/10.1016/j.rser.2020.110069
  17. Cazin, V., & Jurilj, Ž. (2019). Eksploatacijsko polje geotermalne vode Zagreb i mogućnosti njezinog korištenja. Nafta i Plin, 38(156), 62-73.
  18. Čubrić, S. (1989). Mogućnost znatnijeg povećanja proizvodnje geoter-mijske energije na lokalitetu Mladost u Zagrebu. Naftaplin, 23, 127-133.
  19. Čubrić, S. (1987). Obnovljiva geotermijska energija i njen utjecaj na ekonomiku proizvodnje geotermijske energije na nekim ležištima u SR Hrvatskoj. Doctoral Thesis. Zagreb, Croatia: University of Zagreb, Mining-Geological-Petroleum Faculty, 191 p.
  20. Haas, J. (2002). Origin and evolution of Late Triassic backplatform and intraplatform basins in the Transdanubian Range, Hungary. Geologica Carpathica, 53(3), 159-178.
  21. Haas, J., Hips, K., Pelikán, P., Zajzon, N.E., Götz, A., & Tardi-Filácz, E. (2004). Facies analysis of marine Permian/Triassic boundary sections in Hungary. Acta Geologica Hungarica, 47, 297-340. https://doi.org/10.1556/AGeol.47.2004.4.1
  22. Grgasović, T (1998). Stratigrafija gornjotrijaskih naslaga Žumberka. Master Thesis. Zagreb, Croatia: University of Zagreb, Faculty of Science.
  23. Ćorić, S., Pavelić, D., Rögl, F., Mandic, O., Vrabac, S., Avanić, R., Jerković, L., & Vranjković, A (2009). Revised Middle Miocene datum for initial marine flooding of North Croatian Basins (Pannonian Basin System, Central Paratethys). Geologia Croatica, 62(1), 31-43. https://doi.org/10.4154/GC.2009.03
  24. Pavelić, D., Miknić, M., & Sarkotić-Šlat, M. (1998). Early to Middle Miocene facies succession in lacustrine and marine environments on the southwestern margin of the Pannonian basin system (Croatia). Geologica Carpathica, 49, 433-443.
  25. Malvić, T. (2008). Primjena geostatistike u analizi geoloških podataka. Zagreb, Croatia: INA-Industrija Nafte D.D., 103 p.
  26. Nguyen, L.Q., Le, T.T.T., Nguyen, T.G., & Tran, D.T. (2023). Prediction of underground mining-induced subsidence: Artificial neural network based approach. Mining of Mineral Deposits, 17(4), 45-52. https://doi.org/10.33271/mining17.04.045
  27. Ivšinović, J., & Malvić, T. (2020). Application of the Radial Basis Function interpolation method in selected reservoirs of the Croatian part of the Pannonian Basin System. Mining of Mineral Deposits, 14(3), 37-42. https://doi.org/10.33271/mining14.03.037
  28. Bralić, N., & Malvić, T. (2022). Interpretation of chemical analyses and cement modules in flysch by (Geo)Statistical Methods, example from the Southern Croatia. Processes, 10, 813.https://doi.org/10.3390/pr10050813
  29. Shapiro-Wilk Test Calculator. (2024). Retrieved from: https://www.statskingdom.com/shapiro-wilk-test-calculator.html
  30. Kolmogorov-Smirnov Test Calculator. (2024). Retrieved from: https://www.statskingdom.com/kolmogorov-smirnov-test-calculator.html
  31. Лицензия Creative Commons