Mining of Mineral Deposits

ISSN 2415-3443 (Online)

ISSN 2415-3435 (Print)

Flag Counter

Investigation of the operation of thermocatalytic sensors in explosion hazard monitoring systems for technogenic objects

Vasyl Holinko1, Valentyna Zabelina1, Oleksandr Holinko1, Oleg Kuznetsov1

1Dnipro University of Technology, Dnipro, Ukraine


Min. miner. depos. 2025, 19(1):142-150


https://doi.org/10.33271/mining19.01.142

Full text (PDF)


      ABSTRACT

      Purpose. The research aims to theoretically and experimentally investigate the operation of thermocatalytic sensors in the entire range of possible concentrations of explosion-hazardous vapors and gases to assess the unambiguous operation of explosion protection equipment.

      Methods. Analytical methods, classical provisions of electrical engineering, thermodynamics and catalysis, experimental studies of serial single-chamber pellet-type thermocatalytic sensors with a platinum-palladium catalyst, as well as the evaluation and generalization of experimental results are used in the research.

      Findings. It has been found that when monitoring the explosion hazard of gas mixtures using thermocatalytic sensors, the maximum measuring bridge output signal value is observed at a concentration of combustible gases where the complete reduction of oxygen sorbed by the catalyst is ensured. However, at higher concentration of combustible gases, when insufficient oxygen is available on the catalyst surface for complete oxidation, a decrease in the measuring bridge output signal value is observed. It is shown that, unlike gas-air mixtures, it is impossible to reduce the bridge output signal to zero in the region of high fuel-vapor concentrations, and the minimum bridge output signal value depends on the partial pressure value of oxygen in the fuel-air mixture when it is saturated with fuel vapors, which ensures the unambiguous operation of explosion protection equipment in the entire range of possible explosion-hazardous concentrations of fuel vapors.

      Originality. It has been determined that when using thermocatalytic sensors to control the explosion-hazardous medium during the oxidation reaction of the fuel-air mixture in the diffusion region at the stoichiometric value of the diffusion fluxes of combustible components and oxygen to the surface of the catalytically active sensor element, short-term dips in the measuring bridge output signal of gas analyzers are observed. At high concentrations of fuel vapors, when oxygen becomes a limiting agent in the mixture, the bridge output signal is inverted, which is a consequence of a more active oxidation reaction on the comparative thermocouple.

      Practical implications. The conducted research allows us to recommend thermocatalytic sensors for use in explosion hazard monitoring systems of oil-fuel complex facilities, the main tasks of which are to control the explosion hazard of the medium and timely adoption of control decisions aimed at eliminating the threat of explosion, and to substantiate their power supply modes.

      Keywords: explosion hazard, control methods, methane, fuel-air mixtures, thermocatalytic sensors


      REFERENCES

  1. Stoetskyi, V.F., Dranyshnikov, L.V., Esypenko, A.D., Zhartovskyi, V.M., & Naivert, O.V. (2006). Technogenic safety management of high-risk facilities. Kyiv, Ukraine: Aston, 410 p.
  2. Ivasenko, V.M. (2015). Gas stations: Investigation of emissions, impact on the environment. Technology Audit and Production Reserves, 1/2(21), 8-12.
  3. Periago, J., & Prado, C. (2015). Evolution of occupational exposure to environmental levels of aromatic hydrocarbons in service stations. Annals of Occupational Hygiene, 49, 233-240.
  4. Tyuleneva, T., Kabanov, E., Moldazhanov, M., & Plotnikov, E. (2021). Improving the professional risk management system for methane and coal dust explosions using a risk-based approach. E3S Web of Conferences, 278, 01027. https://doi.org/10.1051/e3sconf/202127801027
  5. Aldhafeeri, T., Tran, M.-K., Vrolyk, R., Pope, M., & Fowler, M. (2020). A review of methane gas detection sensors: recent developments and future perspectives. Inventions, 5(3), 28.
  6. Golinko, V., & Kotlyarov, A. (2010). Control of explosive environment in mining and equipment of coal mines. Dnipropetrovsk, Ukraine: Lira Publishing House, 368 p.
  7. Ivasenko, V.M., & Primysky, V.P. (2014). Methods and devices for controlling gas station emissions. Visnyk Natsionalnoho Tekhnichnoho Universytetu “KHPI”, Seriia: Mekhaniko-Tekhnolohichni Systemy ta Kompleksy, 60(1102), 174-180.
  8. Koval, Yu. (2012). New semiconductor MEMS gas sensors from FIGARO ENGINEERING. Chip News Ukraine, 3(113), 52-55.
  9. Laref, R., Ahmadou, D., Losson, E., & Siadat, M. (2017). Orthogonal signal correction to improve stability regression model in gas sensor systems. Journal of Sensors, 2017, 9851406. https://doi.org/10.1155/2017/9851406
  10. Vovna, O.V., Zori, А.А., & Akhmedov, R.M. (2017). Increasing the accuracy of the optoelectronic methane concentration meter of coal mines. Elektroenerhetyka ta Peretvoriuvalna Tekhnika, 4(226), 19-24.
  11. Yesmakhanova, L.N., Tulenbayev, M.S., Chernyavskaya, N.P., Beglerova, S.T., Kabanbayev, A.B., Abildayev, A.A., & Maussymbayeva, A.D. (2021). Simulating the coal dust combustion process with the use of the real process parameters. ARPN Journal of Engineering and Applied Sciences, 16(22), 2395-2407.
  12. Primysky, V.P., & Ivasenko, V.M. (2012). Atmospheric monitoring stations: Status and development prospects. Metrolohiia ta Prylady, 1, 43-49.
  13. Ishchenko, V.A., & Petruk, V.H. (2010). Highly sensitive means of controlling small concentrations of gases. Vinnytsia, Ukraine: VNTU, 138 p.
  14. Golinko, V.I., Belonozhko, A.V., & Belonozhko, V.V. (2014). Control of the explosion hazard of gas mixtures during emergency gas contamination of mine workings. Dnipropetrovsk, Ukraine: NHU, 209 p.
  15. Holinko, O., Yuldasheva, N., Zhartay, Z., Mirzoieva, T., Petrychenko, O., & Hulevets, V. (2023). Methodology of creation and development of information systems for technological safety of mining facilities. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 6, 127-133. https://doi.org/10.33271/nvngu/2023-6/127
  16. Golinko, V., & Golinko, O. (2023). Theoretical and methodological principles of computer monitoring of explosion protection systems. Naukovi Pratsi DonNTU. Seriya: “Informatyka, Kibernetyka ta Obchysliuval’na Tekhnika”, 2(37), 34-41. https://doi.org/10.31474/1996-1588-2023-2-37-34-41
  17. Аlekseev, М., & Holinko, О. (2018). Automatic diagnostics of stationary gas analyzers thermocatalytic. Collection of Research Papers of National Mining University of Ukraine, 53, 223-229.
  18. Аlekseev, М., & Golinko, О. (2020). Automatic control of the sensitivity of sensors of stationary thermocatalytic methane analyzers. Mining Herald, 107, 16-22. https://doi.org/10.31721/2306-5435-2020-1-107-16-22
  19. Golinko, V., & Golinko, O. (2023). Methods and algorithms for monitoring the state of the gas diffusion filter of methane analyzers. Naukovi Pratsi DonNTU. Seriya: “Informatyka, Kibernetyka ta Obchysliuval’na Tekhnika”, 1(36), 22-29. https://doi.org/10.31474/1996-1588-2023-1-36-22-29
  20. Golinko, V., & Kotlyarov, A. (2006). Study of temperature regimes of thermoelements in bridge measuring circuits of thermoconductometric methane analyzers. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 12, 55-58.
  21. Kotlyarov, A., & Frundin, V. (2006). Theoretical assessment of the errors of thermoconductometric methane analyzers from unmeasured components of the mine atmosphere. Hírnycha Elektromekhanika ta Avtomatyka, 77, 87-93.
  22. Boychenko, S., Shutko, V., & Chernobayeva, N. (2014). Vyznachennia faktoriv, shcho vplyvaiut na velychynu vtrat lehkykh vuhlevodniv vid vyparovuvannia z benzyniv u rezervuarakh horyzontalnykh stalevykh. Naukoiemni Tekhnolohii, 2(22), 236-239.
  23. Boychenko, S.V., Ivanov, S.V., & Fedorovych, L.A. (2004). The relationship between evaporation losses and gasoline conditioning. Visnyk NAU, 4, 58-64.
  24. Chernyak, L. (2013). Perspektyvy vprovadzhennia suchasnykh ekolohichnykh system na ob’iektakh systemy naftoproduktozabezpechennia. Voprosy Khimii i Khimicheskoi Tekhnolohii, 1, 156-160.
  25. Topchiy, R., Ivanchenko, O., P’yankov, A., & Grekov, V. (2013). Shliakhy znyzhennia vtrat benzynu ta pidvyshchennia pozhezhnoi ekolohichnoi bezpeky na skladakh ta punktakh zapravky palyvnymy materialamy. Visnyk Donetskoi Akademii Avtomobilnoho Transportu, 2, 58-64.
  26. Bazaluk, O., Koriashkina, L., Cheberiachko, S., Deryugin, O., Odnovol, M., Lozynskyi, V., & Nesterova, O. (2022). Methodology for assessing the risk of incidents during passenger road transportation using the functional resonance analysis method. Heliyon, 8(11), E11814. https://doi.org/10.1016/j.heliyon.2022.e11814
  27. Boychenko, S.V., & Yavorska, M.V. (2012). Modern methods and means of minimizing hydrocarbon emissions during gasoline storage. Naukoiemni Tekhnolohii, 4, 58-62.
  28. Boychenko, S., & Chernyak, L. (2004). Vybir zasobu zapobihannia vytratam palyv vid vyparovuvannia. Visnyk NAU, 2, 111-114.
  29. Golinko, V., Cheberyachko, S., Deryugin, O., Tretyak, O., & Dusmatova, O. (2020). Assessment of the risks of occupational diseases of the passenger bus drivers. Safety and Health at Work, 11(4), 543-549. https://doi.org/10.1016/j.shaw.2020.07.005
  30. Ghaleh, S., Omidvari, M., Nassiri, P, Momeni, M., Mohammadreza, S., & Lavasani, M. (2019). Pattern of safety risk assessment in road fleet transportation of hazardous materials (oil materials). Safety Science, 116, 1-12.https://doi.org/10.1016/j.ssci.2019.02.039
  31. Saik, P., Tsopa, V., Cheberyachko, S., Deryugin, O., Sokurenko, S., Suima, I., & Lozynskyi, V. (2024). Improving the process of managing psychosocial risks in organizations. Risk Management and Healthcare Policy, 17, 2997-3016.https://doi.org/10.2147/RMHP.S488263
  32. Lisafin, D.V., & Lisafin, V.P. (2012). Universal dependence of the elasticity of oil vapors on the ratio of phases and temperature. Naukovyi Visnyk IFNTUNH, 2, 164-169.
  33. Лицензия Creative Commons